Laravel - how to abstract underlying logic through exposing a generic Class - php

I'm trying to build a good building block for my application to avoid vendor locking. It's Laravel 5.4, and here is the scenario I need help with:
I want to implement SMS sending but I don't want to be locked to a single vendor.
So conceptually in code, I would do something like this:
use App/SMS;
// controller
public function send_sms()
{
SMS::send('Thanks for saving', $number);
}
However SMS is just an abstraction, which would be calling a real implementation's class functions, which I may have many of, and switch out in a config file for example.
class SMSGlobal implements SMSProvider
{
public function send($msg, $to)
{
// Whatever the logic here is for SMSGlobal to send an SMS.
}
}
class Nexmo implements SMSProvider
{
public function send($msg, $to)
{
// Whatever the logic here is for Nexmo to send an SMS.
}
}
// Somewhere else, I would set SMS to a particular provider (in config)?
'SMSProvider' => 'SMSGlobal'
I hope this makes sense. I'm just not sure how to implement this type of thing - conceptually it makes sense (in my head).
I would have MANY of these abstractions, so the system is not vendor locked.
It would be similar to the way Cache works, where in config you set 'redis' and then calling Cache::get() uses the redis provider but as a programmer there is no difference whether the backend is database/file or redis.
Cheers!
FYI - Also asked here https://laracasts.com/discuss/channels/laravel/abstracting-underlying-logic
Not sure of the size of the community there though.

It sounds like you're describing creating and passing around an interface which is bound to implementing classes. In Laravel you can bind an interface with implementing classes as described in the docs on the service container.

Related

What is the usage of repositories and interfaces in Laravel?

After developing a few projects using Codeigniter since 2 years, I stared to learn Laravel.
I downloaded a few projects lo learn how they are coded. As I understood, many of them are using only models, views and controllers which is same as Codeigniter.
But one project has used repositories and interfaces. It is really hard to understand whats going on that project. So what is the usage of repositories and interfaces in Laravel? When should I use them?
I will try to explain as clearly as possible the two concepts.
Interfaces\Contracts
In general OOP interfaces are used to describe which methods/functionalities the class that implements that interface is offering without caring about the actual implementation.
Laravel uses Contracts mainly to separate a service from the actual implementation. To be more clear let's make an example
<?php
namespace App\Orders;
class OrdersCache
{
protected $cache;
public function __construct(\SomePackage\Cache\Memcached $cache)
{
$this->cache = $cache;
}
public function find($id)
{
if ($this->cache->has($id)) {
//
}
}
}
As you can see in this class the code is tightly coupled to a cache implementation (i.e. \SomePackage\Cache\Memcached) so if the API of that Cache class changes our code also must be changed accordingly. The same thing happens if we want to change the Cache implementation with another one (e.g. redis).
Instead of doing that, our code could depend on an interface that is agnostic from the implementation:
<?php
namespace App\Orders;
use Illuminate\Contracts\Cache\Repository as Cache;
class OrdersCache
{
public function __construct(Cache $cache)
{
$this->cache = $cache;
}
public function find($id)
{
if ($this->cache->has($id)) {
//
}
}
}
Now our code is not coupled with any specific implementation because Cache is actually an interface. So basically in our class we are requiring an instance of a class that behaves like described in the Cache interface, but we are not really interested in how it works internally. Doing that if we want to change the cache implementation we could write a class that implements the interface Cache without changing any line of code in our OrdersCache class. Doing that our code is easier to understand and maintain and your packages are a lot more reusable. See the section Loose Coupling in the Laravel documentation for further examples.
Interfaces and Service Container
One of the main features of Laravel is its Service Container, it is used to manage dependencies and performing dependency injection. Please take a look at Service Container definition from Laravel documentation.
Dependency Injection is widely used by Laravel also to bind interfaces to implementation. Let's make an example:
$app->bind('App\Contracts\EventPusher', 'App\Services\RedisEventPusher');
And let our class be
<?php
namespace App\Http\Controllers;
use App\Contracts\EventPusher;
class EventsController extends Controller
{
protected $pusher;
public function __construct(EventPusher $pusher)
{
$this->pusher = $pusher;
}
}
Without declaring anything else we are basically saying everytime that someone need an EventPusher instance, please Laravel, provide an instance of RedisEventPusher class. In this case everytime that your controller is instantiated, Laravel will pass an instance of RedisEventPusher to your controller without specifying anything else.
You can dig into that by looking at Binding Interfaces to Implementation section on the Laravel documentation.
Repositories
Repositories is a concept applicable to the MVC pattern independently from any specific framework. Typically you have your Model that is the data layer (e.g. interacts with the database directly), your Controller that handles the access logic to the data layer and your View that shows the data provided by the Controller.
Repositories instead could be defined as follows:
To put it simply, Repository pattern is a kind of container where data access logic is stored. It hides the details of data access logic from business logic. In other words, we allow business logic to access the data object without having knowledge of underlying data access architecture.
Soruce: https://bosnadev.com/2015/03/07/using-repository-pattern-in-laravel-5
To know how to use them within Laravel please take a look at this great article.
That's all, i hope it helps to clear up your mind.
Interfaces are what any implementing class should call.
interface CanFlyInterface
{
public function fly();
}
Think of it like programming without bothering with logic.
if ($object instanceof CanFlyInterface) {
$obj->fly();
}
Now we could have passed a Bird object, or an Aeroplane object! PHP DOESN'T CARE, so long as it implements the interface!
class Bird implements CanFlyInterface
{
public function fly()
{
return 'flap flap!';
}
}
class Aeroplane implements CanFlyInterface
{
public function fly()
{
return 'roar! whoosh!';
}
}
Your other question, what a Repository class is. It's just a class that keeps all your DB queries in the one place. Check this interface as an example:
interface RepositoryInterface
{
public function insert(array $data);
public function update(array $data);
public function findById($id);
public function deleteById($id);
}
Hopefully this should clear things up for you! Good luck with all your PHP coding :-D
Let's start with the easier one, the interface:
You normally use interfaces to implement classes with required methods:
http://php.net/manual/en/language.oop5.interfaces.php
Laravel's Contracts are a set of interfaces that define the core services provided by the framework. For example, a Illuminate\Contracts\Queue\Queue contract defines the methods needed for queueing jobs, while the Illuminate\Contracts\Mail\Mailer contract defines the methods needed for sending e-mail.
https://laravel.com/docs/5.4/contracts#introduction
When Laravel is running it can check if a class implements a special interface:
if ($cls instanceof IInterface) {
$cls->interfaceFunction();
}
Since Laravel is able to work with queues it will check if the event should be queued or not by checking for an exiting interface.
To inform Laravel that a given event should be broadcast, implement the Illuminate\Contracts\Broadcasting\ShouldBroadcast interface on the event class.
https://laravel.com/docs/5.4/broadcasting#defining-broadcast-events
Repository:
I didn't found that much about this:
Our repository should not have so much knowledge regarding who is providing them data or how they are providing it. https://laravel.com/docs/5.4/contracts#loose-coupling
But I found some other information on a webpage:
a Repository will connect Factories with Gateways
https://code.tutsplus.com/tutorials/the-repository-design-pattern--net-35804
The link will give you more information about the the details.
Hope I could help you :)
First of all, using Repository and Interface in larger application is not only beneficiary in Laravel but in all technology for coding standard as well as for separation of concern.
According to Microsoft (I found best explanation here)
Why to use Repository:
Use a repository to separate the logic that retrieves the data and
maps it to the entity model from the business logic that acts on the
model. The business logic should be agnostic to the type of data that
comprises the data source layer. The repository mediates between the
data source layer and the business layers of the application. It
queries the data source for the data, maps the data from the data
source to a business entity, and persists changes in the business
entity to the data source.
A repository separates the business logic
from the interactions with the underlying data source or Web service.
The separation between the data and business tiers has three benefits:
It centralizes the data logic or Web service access logic. It provides
a substitution point for the unit tests. It provides a flexible
architecture that can be adapted as the overall design of the
application evolves. There are two ways that the repository can query
business entities. It can submit a query object to the client's
business logic or it can use methods that specify the business
criteria. In the latter case, the repository forms the query on the
client's behalf. The repository returns a matching set of entities
that satisfy the query.
For Interface, you have a lot of answers above, hope you have understand.
First of all, repositories and interfaces are not specific to Laravel but common coding standards in most of the languages.
Below Laracasts videos will be useful to understand the basics if you don't mind spend few dollars.
https://laracasts.com/lessons/repositories-and-inheritance
https://laracasts.com/series/object-oriented-bootcamp-in-php

Using dependency injection over laravel facades

I have read a number of sources that hint that laravel facade's ultimately exist for convenience and that these classes should instead be injected to allow loose coupling. Even Taylor Otwell has a post explaining how to do this. It seems I am not the only one to wonder this.
use Redirect;
class Example class
{
public function example()
{
return Redirect::route("route.name");
}
}
would become
use Illuminate\Routing\Redirector as Redirect;
class Example class
{
protected $redirect;
public function __constructor(Redirect $redirect)
{
$this->redirect = $redirect
}
public function example()
{
return $this->redirect->route("route.name");
}
}
This is fine except that I am starting to find that some constructors and methods are beginning to take four+ parameters.
Since the Laravel IoC seems to only inject into class constructors and certain methods (controllers), even when I have fairly lean functions and classes, I am finding that constructors of the classes are becoming packed out with the needed classes that then get injected into the needed methods.
Now I am finding that if I continue down this approach that I will need my own IoC container, which feels like reinventing the wheel if I am using a framework like laravel?
For example I use services to control the business / view logic rather than controllers dealing with them - they simply route the views. So a controller will first take its corresponding service, then then the parameter in its url. One service function also needs to check the values from a form, so then I need Request and Validator. Just like that, I have four parameters.
// MyServiceInterface is binded using the laravel container
use Interfaces\MyServiceInterface;
use Illuminate\Http\Request;
use Illuminate\Validation\Factory as Validator;
...
public function exampleController(MyServiceInterface $my_service, Request $request, Validator $validator, $user_id)
{
// Call some method in the service to do complex validation
$validation = $my_service->doValidation($request, $validator);
// Also return the view information
$viewinfo = $my_service->getViewInfo($user_id);
if ($validation === 'ok') {
return view("some_view", ['view_info'=>$viewinfo]);
} else {
return view("another_view", ['view_info'=>$viewinfo]);
}
}
This is a single example. In reality, many of my constructors already have multiple classes being injected (Models, Services, Parameters, Facades). I have started to 'offload' the constructor injection (when applicable) to method injection, and have the classes calling those methods use their constructors to inject dependencies instead.
I have been told that more than four parameters for a method or class constructor as a rule of thumb is bad practice / code smell. However I cannot see how you can really avoid this if you choose the path of injecting laravel facades.
Have I got this idea wrong? Are my classes / functions not lean enough? Am I missing the point of laravels container or do I really need to think of creating my own IoC container? Some others answers seems to hint at the laravel container being able to eliminate my issue?
That said, there doesn't seem to be a definitive consensus on the issue...
This is one of the benefits of constructor injection - it becomes obvious when you class is doing to much, because the constructor parameters grow too large.
1st thing to do is split up controllers that have too many responsibilities.
Say you have a page controller:
Class PageController
{
public function __construct(
Request $request,
ClientRepositoryInterface $clientrepo,
StaffRepositortInterface $staffRepo
)
{
$this->clientRepository = $clientRepo;
//etc etc
}
public function aboutAction()
{
$teamMembers = $this->staffRepository->getAll();
//render view
}
public function allClientsAction()
{
$clients = $this->clientRepository->getAll();
//render view
}
public function addClientAction(Request $request, Validator $validator)
{
$this->clientRepository->createFromArray($request->all() $validator);
//do stuff
}
}
This is a prime candidate for splitting into two controllers, ClientController and AboutController.
Once you have done that, if you still have too many* dependencies, its time to look for what i will call indirect dependancies (because i cant think of the proper name for them!) - dependencies that are not directly used by the dependant class, but instead passed on to another dependency.
An example of this is addClientAction - it requires a request and a validator, just to pass them to the clientRepostory.
We can re factor by creating a new class specifically for creating clients from requests, thus reducing our dependencies, and simplifying both the controller and the repository:
//think of a better name!
Class ClientCreator
{
public function __construct(Request $request, validator $validator){}
public function getClient(){}
public function isValid(){}
public function getErrors(){}
}
Our method now becomes:
public function addClientAction(ClientCreator $creator)
{
if($creator->isValid()){
$this->clientRepository->add($creator->getClient());
}else{
//handle errors
}
}
There is no hard and fast rule as to what number of dependencies are too many.
The good news is if you have built your app using loose-coupling, re-factoring is relatively simple.
I would much much rather see a constructor with 6 or 7 dependencies than a parameterless one and a bunch of static calls hidden throughout the methods
One issue with facades is that additional code has to be written to support them when doing automated unit testing.
As for solutions:
1. Resolving dependencies manually
One way of resolving dependencies, if you do not wish to do it via. constructors or methods injection, is to call app() directly:
/* #var $email_services App\Contracts\EmailServicesContract
$email_services = app('App\Contracts\EmailServicesContract');
2. Refactoring
Sometimes when I find myself passing too many services, or dependencies into a class, maybe I have violated the Single Responsibility Principe. In those cases, maybe a re-design is needed, by breaking the service or dependency into smaller classes. I would use another service to wrap up a related group of classes to serve something as a facade. In essence, it'll be a hierarchy of services/logic classes.
Example: I have a service that generate recommended products and send it out to users via email. I call the service WeeklyRecommendationServices, and it takes in 2 other services as dependency - a Recommendation services which is a black-box for generating the recommendations (and it has its own dependencies -- perhaps a repo for products, a helper or two), and an EmailService which maybe has Mailchimp as a dependency). Some lower-level dependencies, such as redirects, validators, etc. will be in those child services instead of the service that acts as the entry point.
3. Use Laravel global functions
Some of the Facades are available as function calls in Laravel 5. For instance, you can use redirect()->back() instead of Redirect::back(), as well as view('some_blade) instead of View::make('some_blade'). I believe it's the same for dispatch and some other commonly used facades.
(Edited to Add) 4. Using traits
As I was working on queued jobs today, I also observe that another way to inject dependencies is by using traits. For instance, the DispathcesJobs trait in Laravel has the following lines:
protected function dispatch($job)
{
return app('Illuminate\Contracts\Bus\Dispatcher')->dispatch($job);
}
Any class that uses the traits will have access to the protected method, and access to the dependency. It's neater than having many dependencies in the constructor or method signatures, is clearer (about what dependencies are involved) than globals and easier to customize than manual DI container calls. The drawback is that each time you invoke the function you have to retrieve the dependency from the DI container,
Class methods that form a part of the routing mechanism in Laravel (middleware, controllers, etc.) also have their type-hints used to inject dependencies - they don't all need to be injected in the constructor. This may help to keep your constructor slim, even though I'm not familiar with any four parameter limit rule of thumb; PSR-2 allows for the method definition to be stretched over multiple lines presumably because it's not uncommon to require more than four parameters.
In your example you could inject the Request and Validator services in the constructor as a compromise, since they're often used by more than one method.
As for establishing a consensus - Laravel would have to be more opinionated for applications to be similar enough to utilise a one-size-fits-all approach. An easier call though is that I think facades will go the way of the dodo in a future version.
Not so much an answer but some food for thought after talking to my colleagues who have made some very valid points;
If the internal structure of laravel is changed between versions (which has happened in the past apparently), injecting the resolved facade class paths would break everything on an upgrade - while using the default facades and helper methods mostly (if not completely) avoids this issue.
Although decoupling code is generally a good thing, the overhead of injecting these resolved facade class paths makes classes cluttered - For developers taking over the project, more time is spent trying to follow the code which could be spent better on fixing bugs or testing. New developers have to remember which injected classes are a developers and which are laravels. Developers unfamiliar with laravel under the hood have to spend time looking up the API. Ultimately the likelihood of introducing bugs or missing key functionality increases.
Development is slowed and testability isn't really improved since facades are already testable. Rapid development is a strong-point of using laravel in the first place. Time is always a constraint.
Most of the other projects use laravel facades. Most people with experience using laravel use facades. Creating a project that doesn't follow the existing trends of previous projects slows things down in general. Future inexperienced (or lazy!) developers may ignore facade injection and the project may end up with a mixed format. (Even code reviewers are human)
Well your thoughts and concerns and correct and I had them as well.
There are some benefits of Facades ( I generally dont use them ), but if you do use just I would suggest using them only in the controllers, as the controllers are just entry and exit points for me at least.
For the example you gave I'll show how I generally handle it:
// MyServiceInterface is binded using the laravel container
use Interfaces\MyServiceInterface;
use Illuminate\Http\Request;
use Illuminate\Validation\Factory as Validator;
...
class ExampleController {
protected $request;
public function __constructor(Request $request) {
// Do this if all/most your methods need the Request
$this->request = $request;
}
public function exampleController(MyServiceInterface $my_service, Validator $validator, $user_id)
{
// I do my validation inside the service I use,
// the controller for me is just a funnel for sending the data
// and returning response
//now I call the service, that handle the "business"
//he makes validation and fails if data is not valid
//or continues to return the result
try {
$viewinfo = $my_service->getViewInfo($user_id);
return view("some_view", ['view_info'=>$viewinfo]);
} catch (ValidationException $ex) {
return view("another_view", ['view_info'=>$viewinfo]);
}
}
}
class MyService implements MyServiceInterface {
protected $validator;
public function __constructor(Validator $validator) {
$this->validator = $validator;
}
public function getViewInfo($user_id, $data)
{
$this->validator->validate($data, $rules);
if ($this->validator->fails()) {
//this is not the exact syntax, but the idea is to throw an exception
//with the errors inside
throw new ValidationException($this->validator);
}
echo "doing stuff here with $data";
return "magic";
}
}
Just remember to break your code to small individual pieces that each one handles his own responsibility.
When you properly break your code, in most cases you will not have so many constructor parameters, and code will be easily testable and mocked.
Just one last note, if you are building a small application or even a page in a huge application for example a "contact page" and "contact page submit", you can surely do everything in the controller with facades, it simply depends on the complexity of the project.
I love the laravel due to its beautiful architecture.Now as from my approach i wouldnt inject all the facades in to the controller method only why? Injecting Redirect facades only in controller wrong practices as it might need in other. And mainly the things that are mostly used should be declared for all while for those who uses some or only then its best practice to inject them via method as when you declare at top it will hamper in your memory optimization as well as the speed of your code. Hope this would help

Am I setting myself up for failure using a static method in a Laravel Controller?

I am quite new to OOP, so this is really a basic OOP question, in the context of a Laravel Controller.
I'm attempting to create a notification system system that creates Notification objects when certain other objects are created, edited, deleted, etc. So, for example, if a User is edited, then I want to generate a Notification regarding this edit. Following this example, I've created UserObserver that calls NotificationController::store() when a User is saved.
class UserObserver extends BaseObserver
{
public function saved($user)
{
$data = [
// omitted from example
];
NotificationController::store($data);
}
}
In order to make this work, I had to make NotificationController::store() static.
class NotificationController extends \BaseController {
public static function store($data)
{
// validation omitted from example
$notification = Notification::create($data);
}
I'm only vaguely familiar with what static means, so there's more than likely something inherently wrong with what I'm doing here, but this seems to get the job done, more or less. However, everything that I've read indicates that static functions are generally bad practice. Is what I'm doing here "wrong," per say? How could I do this better?
I will have several other Observer classes that will need to call this same NotificationController::store(), and I want NotificationController::store() to handle any validation of $data.
I am just starting to learn about unit testing. Would what I've done here make anything difficult with regard to testing?
I've written about statics extensively here: How Not To Kill Your Testability Using Statics. The gist of it as applies to your case is as follows:
Static function calls couple code. It is not possible to substitute static function calls with anything else or to skip those calls, for whatever reason. NotificationController::store() is essentially in the same class of things as substr(). Now, you probably wouldn't want to substitute a call to substr by anything else; but there are a ton of reasons why you may want to substitute NotificationController, now or later.
Unit testing is just one very obvious use case where substitution is very desirable. If you want to test the UserObserver::saved function just by itself, because it contains a complex algorithm which you need to test with all possible inputs to ensure it's working correctly, you cannot decouple that algorithm from the call to NotificationController::store(). And that function in turn probably calls some Model::save() method, which in turn wants to talk to a database. You'd need to set up this whole environment which all this other unrelated code requires (and which may or may not contain bugs of its own), that it essentially is impossible to simply test this one function by itself.
If your code looked more like this:
class UserObserver extends BaseObserver
{
public function saved($user)
{
$data = [
// omitted from example
];
$this->NotificationController->store($data);
}
}
Well, $this->NotificationController is obviously a variable which can be substituted at some point. Most typically this object would be injected at the time you instantiate the class:
new UserObserver($notificationController)
You could simply inject a mock object which allows any methods to be called, but which simply does nothing. Then you could test UserObserver::saved() in isolation and ensure it's actually bug free.
In general, using dependency injected code makes your application more flexible and allows you to take it apart. This is necessary for unit testing, but will also come in handy later in scenarios you can't even imagine right now, but will be stumped by half a year from now as you need to restructure and refactor your application for some new feature you want to implement.
Caveat: I have never written a single line of Laravel code, but as I understand it, it does support some form of dependency injection. If that's actually really the case, you should definitely use that capability. Otherwise be very aware of what parts of your code you're coupling to what other parts and how this will impact your ability to take it apart and refactor later.

Autoload a simple DAO in Symfony2+Propel

I've been working on a project and I decided it'd be a good idea to have some sort of, like, DAO, but simplified.
Basically, the only thing I want from it (right now, at least) is to fetch me objects by model name and id. I wrote this very simple piece of code:
class DAO {
public static function get($className,$id) {
$queryName = $className."Query";
if (!class_exists($className) || !class_exists($queryName)) {
return false;
}
$q = $queryName::create()->filterByID($id)->find();
return $q;
}
}
However, I found myself stuck with the implementation. I guess I need to somehow autoload it so that it'll be able to check for the existence of the classes and so that I could use it anywhere inside my app, but I don't know how. Can anyone help me out? Or if there's a better way to do that, I'll appreciate any input.
What you're looking for is a Service.
Definition from the documentation:
Put simply, a Service is any PHP object that performs some sort of
"global" task. It's a purposefully-generic name used in computer
science to describe an object that's created for a specific purpose
(e.g. delivering emails). Each service is used throughout your
application whenever you need the specific functionality it provides.
Defining your class as a service is as simple as this:
app/config/config.yml
...
services:
my_dao:
class: Your\Bundle\DAO
...
Now you can access DAO in your controllers doing something like this:
$dao = $this->get('my_dao');
When you make this call, the Service Container will create an instance of your class and return it. There will always be at most one instance (singleton) and if it's never called, it won't even be instantiated.
I recommend reading the documentation.
Opinion
It seems like you're having trouble adapting to the Symfony way.
If you take a look at The Book you'll see that the Entity Manager in conjunction with your entity's Repository handle most of what DAO's traditionally did. In other words, there's really no need for your DAO class.
For example, fetching any object by id is as easy as:
$om->getRepository('YourBundle:YourModel')->find($id);
Anyway, if you're particularly fond of that approach, you may want to try this project.

Should I remove static function from my code?

My code is located here: https://github.com/maniator/SmallFry
Should I make it so that that the App class does not have to use static functions but at the same time be able to set and set variables for the app from anywhere?
Or should I keep it how it is now with App::get and App::set methods?
What are the advantages and disadvantages of both?
How would I accomplish that 1st task if I was to undertake it?
Related Question
Sample code:
//DEFAULT TEMPLATE
App::set('APP_NAME', 'SmallVC');
//END DEFAULT TEMPLAT
//
//DEFAULT TEMPLATE
App::set('DEFAULT_TEMPLATE', 'default');
//END DEFAULT TEMPLATE
//DEFAULT TITLE
App::set('DEFAULT_TITLE', 'Small-VC');
//END DEFAULT TITLE
//LOGIN SEED
App::set('LOGIN_SEED', "lijfg98u5;jfd7hyf");
//END LOGIN SEED
App::set('DEFAULT_CONTROLLER', 'AppController');
if(App::get('view')){
$template_file = $cwd.'/../view/'.App::get('view').'/'.App::get('method').'.stp';
if(is_file($template_file)){
include $template_file;
}
else {
include $cwd.'/../view/missingview.stp'; //no such view error
}
}
else {
App::set('template', 'blank');
include $cwd.'/../view/missingfunction.stp'; //no such function error
}
I think you have a feeling that static is bad. What I am posting may seem fairly crazy as it is a massive change. At the very least hopefully it presents a different idea of the world.
Miško Hevery wrote static methods are a death to testability.
I like testing, so for that reason I don't use them. So, how else can we solve the problem? I like to solve it using what I think is a type of dependency injection. Martin Fowler has a good but complicated article on it here.
For each object at construction I pass the objects that are required for them to operate. From your code I would make AppController become:
class AppController
{
protected $setup;
public function __construct(array $setup = array())
{
$setup += array('App' => NULL, 'Database' => NULL);
if (!$setup['App'] instanceof App)
{
if (NULL !== $setup['App'])
{
throw new InvalidArgumentException('Not an App.');
}
$setup['App'] = new App();
}
// Same for Database.
// Avoid doing any more in the constructor if possible.
$this->setup = $setup;
}
public function otherFunction()
{
echo $this->setup['App']->get('view');
}
}
The dependancies default to values that are most likely (your default constructions in the if statements). So, normally you don't need to pass a setup. However, when you are testing or want different functionality you can pass in mocks or different classes (that derive from the right base class). You can use interfaces as an option too.
Edit The more pure form of dependency injection involves further change. It requires that you pass always pass required objects rather than letting the class default one when the object isn't passed. I have been through a similar change in my codebase of +20K LOC. Having implemented it, I see many benefits to going the whole way. Objects encapsulation is greatly improved. It makes you feel like you have real objects rather than every bit of code relying on something else.
Throwing exceptions when you don't inject all of the dependencies causes you to fix things quickly. With a good system wide exception handler set with set_exception_handler in some bootstrap code you will easily see your exceptions and can fix each one quickly. The code then becomes simpler in the AppController with the check in the constructor becoming:
if (!$setup['App'] instanceof App)
{
throw new InvalidArgumentException('Not an App.');
}
With every class you then write all objects would be constructed upon initialisation. Also, with each construction of an object you would pass down the dependencies that are required (or let the default ones you provide) be instantiated. (You will notice when you forget to do this because you will have to rewrite your code to take out dependencies before you can test it.)
It seems like a lot of work, but the classes reflect the real world closer and testing becomes a breeze. You can also see the dependencies you have in your code easily in the constructor.
Well, if it was me, I would have the end goal of injecting the App dependency into any class (or class tree) that needs it. That way in testing or reusing the code you can inject whatever you want.
Note I said reuse there. That's because it's hard to re-use code that has static calls in it. That's because it's tied to the global state so you can't really "change" the state for a subrequest (or whatever you want to do).
Now, on to the question at hand. It appears that you have a legacy codebase, which will complicate things. The way I would approach it is as follows:
Create a non-static version of the app class (name it something different for now) that does nothing but proxy its get/set calls to the real app class. So, for example:
class AppProxy {
public function set($value) {
return App::set($value);
}
}
For now, all it has to do is proxy. Once we finish getting all the code talking to the proxy instead of the static app, we'll make it actually function. But until then, this will keep the application running. That way you can take your time implementing these steps and don't need to do it all in one big sweep.
Pick a main class (one that does a lot for the application, or is important) that you easily control the instantiation of. Preferably one that you instantiate in only one place (in the bootstrap is the easiest). Change that class to use Dependency Injection via the constructor to get the "appproxy".
a. Test this!
Pick another class tree to work on, based on what you think will be most important and easiest.
a. Test!!!
If you have more calls to App::, Go to #3
Change the existing App class to be non-static.
a. Test!!!!!!!!!!
Remove the AppProxy and replace with App in the dependency injectors. If you did it right, you should only have one place to change to make this switch.
Pat yourself on the back and go get a drink, cause you're done.
The reason that I segmented it out like this is that once a step is completed (any step), you can still ship working software. So this conversion could take literally months (depending on the size of your codebase) without interrupting business as usual...
Now, once you're done, you do get some significant benefits:
Easy to test since you can just create a new App object to inject (or mock it as needed).
Side effects are easier to see since the App object is required wherever it could be changed.
It's easier to componentize libraries this way since their side effects are localized/
It's easier to override (polymorphism) the core app class if it's injected than if it's static.
I could go on, but I think it's pretty easy to find resources on why statics are generally bad. So that's the approach I would use to migrate away from a static class to an instance...
If you don't want to have static functions but global access from everywhere WITHOUT passing the object to the places where it is actually needed then you pretty much can only use one thing:
A global variable
So you are not really better of doing that. But that is the only thing i can think of that would fulfill your requirements.
If you App object is something like an application config a first possible step would be to pass it to the objects that need it:
class Login {
public function __construct() {
$this->_login_seed = App::get('LOGIN_SEED');
self::$_ms = Database::getConnection();
}
changes into:
class Login {
public function __construct(App $app) {
$this->_login_seed = $app->get('LOGIN_SEED');
self::$_ms = Database::getConnection();
}

Categories