What is the usage of repositories and interfaces in Laravel? - php

After developing a few projects using Codeigniter since 2 years, I stared to learn Laravel.
I downloaded a few projects lo learn how they are coded. As I understood, many of them are using only models, views and controllers which is same as Codeigniter.
But one project has used repositories and interfaces. It is really hard to understand whats going on that project. So what is the usage of repositories and interfaces in Laravel? When should I use them?

I will try to explain as clearly as possible the two concepts.
Interfaces\Contracts
In general OOP interfaces are used to describe which methods/functionalities the class that implements that interface is offering without caring about the actual implementation.
Laravel uses Contracts mainly to separate a service from the actual implementation. To be more clear let's make an example
<?php
namespace App\Orders;
class OrdersCache
{
protected $cache;
public function __construct(\SomePackage\Cache\Memcached $cache)
{
$this->cache = $cache;
}
public function find($id)
{
if ($this->cache->has($id)) {
//
}
}
}
As you can see in this class the code is tightly coupled to a cache implementation (i.e. \SomePackage\Cache\Memcached) so if the API of that Cache class changes our code also must be changed accordingly. The same thing happens if we want to change the Cache implementation with another one (e.g. redis).
Instead of doing that, our code could depend on an interface that is agnostic from the implementation:
<?php
namespace App\Orders;
use Illuminate\Contracts\Cache\Repository as Cache;
class OrdersCache
{
public function __construct(Cache $cache)
{
$this->cache = $cache;
}
public function find($id)
{
if ($this->cache->has($id)) {
//
}
}
}
Now our code is not coupled with any specific implementation because Cache is actually an interface. So basically in our class we are requiring an instance of a class that behaves like described in the Cache interface, but we are not really interested in how it works internally. Doing that if we want to change the cache implementation we could write a class that implements the interface Cache without changing any line of code in our OrdersCache class. Doing that our code is easier to understand and maintain and your packages are a lot more reusable. See the section Loose Coupling in the Laravel documentation for further examples.
Interfaces and Service Container
One of the main features of Laravel is its Service Container, it is used to manage dependencies and performing dependency injection. Please take a look at Service Container definition from Laravel documentation.
Dependency Injection is widely used by Laravel also to bind interfaces to implementation. Let's make an example:
$app->bind('App\Contracts\EventPusher', 'App\Services\RedisEventPusher');
And let our class be
<?php
namespace App\Http\Controllers;
use App\Contracts\EventPusher;
class EventsController extends Controller
{
protected $pusher;
public function __construct(EventPusher $pusher)
{
$this->pusher = $pusher;
}
}
Without declaring anything else we are basically saying everytime that someone need an EventPusher instance, please Laravel, provide an instance of RedisEventPusher class. In this case everytime that your controller is instantiated, Laravel will pass an instance of RedisEventPusher to your controller without specifying anything else.
You can dig into that by looking at Binding Interfaces to Implementation section on the Laravel documentation.
Repositories
Repositories is a concept applicable to the MVC pattern independently from any specific framework. Typically you have your Model that is the data layer (e.g. interacts with the database directly), your Controller that handles the access logic to the data layer and your View that shows the data provided by the Controller.
Repositories instead could be defined as follows:
To put it simply, Repository pattern is a kind of container where data access logic is stored. It hides the details of data access logic from business logic. In other words, we allow business logic to access the data object without having knowledge of underlying data access architecture.
Soruce: https://bosnadev.com/2015/03/07/using-repository-pattern-in-laravel-5
To know how to use them within Laravel please take a look at this great article.
That's all, i hope it helps to clear up your mind.

Interfaces are what any implementing class should call.
interface CanFlyInterface
{
public function fly();
}
Think of it like programming without bothering with logic.
if ($object instanceof CanFlyInterface) {
$obj->fly();
}
Now we could have passed a Bird object, or an Aeroplane object! PHP DOESN'T CARE, so long as it implements the interface!
class Bird implements CanFlyInterface
{
public function fly()
{
return 'flap flap!';
}
}
class Aeroplane implements CanFlyInterface
{
public function fly()
{
return 'roar! whoosh!';
}
}
Your other question, what a Repository class is. It's just a class that keeps all your DB queries in the one place. Check this interface as an example:
interface RepositoryInterface
{
public function insert(array $data);
public function update(array $data);
public function findById($id);
public function deleteById($id);
}
Hopefully this should clear things up for you! Good luck with all your PHP coding :-D

Let's start with the easier one, the interface:
You normally use interfaces to implement classes with required methods:
http://php.net/manual/en/language.oop5.interfaces.php
Laravel's Contracts are a set of interfaces that define the core services provided by the framework. For example, a Illuminate\Contracts\Queue\Queue contract defines the methods needed for queueing jobs, while the Illuminate\Contracts\Mail\Mailer contract defines the methods needed for sending e-mail.
https://laravel.com/docs/5.4/contracts#introduction
When Laravel is running it can check if a class implements a special interface:
if ($cls instanceof IInterface) {
$cls->interfaceFunction();
}
Since Laravel is able to work with queues it will check if the event should be queued or not by checking for an exiting interface.
To inform Laravel that a given event should be broadcast, implement the Illuminate\Contracts\Broadcasting\ShouldBroadcast interface on the event class.
https://laravel.com/docs/5.4/broadcasting#defining-broadcast-events
Repository:
I didn't found that much about this:
Our repository should not have so much knowledge regarding who is providing them data or how they are providing it. https://laravel.com/docs/5.4/contracts#loose-coupling
But I found some other information on a webpage:
a Repository will connect Factories with Gateways
https://code.tutsplus.com/tutorials/the-repository-design-pattern--net-35804
The link will give you more information about the the details.
Hope I could help you :)

First of all, using Repository and Interface in larger application is not only beneficiary in Laravel but in all technology for coding standard as well as for separation of concern.
According to Microsoft (I found best explanation here)
Why to use Repository:
Use a repository to separate the logic that retrieves the data and
maps it to the entity model from the business logic that acts on the
model. The business logic should be agnostic to the type of data that
comprises the data source layer. The repository mediates between the
data source layer and the business layers of the application. It
queries the data source for the data, maps the data from the data
source to a business entity, and persists changes in the business
entity to the data source.
A repository separates the business logic
from the interactions with the underlying data source or Web service.
The separation between the data and business tiers has three benefits:
It centralizes the data logic or Web service access logic. It provides
a substitution point for the unit tests. It provides a flexible
architecture that can be adapted as the overall design of the
application evolves. There are two ways that the repository can query
business entities. It can submit a query object to the client's
business logic or it can use methods that specify the business
criteria. In the latter case, the repository forms the query on the
client's behalf. The repository returns a matching set of entities
that satisfy the query.
For Interface, you have a lot of answers above, hope you have understand.

First of all, repositories and interfaces are not specific to Laravel but common coding standards in most of the languages.
Below Laracasts videos will be useful to understand the basics if you don't mind spend few dollars.
https://laracasts.com/lessons/repositories-and-inheritance
https://laracasts.com/series/object-oriented-bootcamp-in-php

Related

How to structure Laravel applications when not using Eloquent ORM

I'm new to Laravel and am working on a collection of API endpoints that fetch data from a variety of database tables, transforms and processes that data, and then returns it as a JSON response. What I'm struggling to decide, from reading the documentation, is where my processing/transformation code should live.
I've setup my routes in routes/api.php, and have them point towards a Controller subclass, but from here things get a little murky because I'm not currently looking to make use of Eloquent ORM. It seems like typically I'd generate Model subclasses for each database table, and have a Repository call into those and transform the returned data, like so:
Route => Controller => Repository => Model
But where should I be placing both the database query code, and the logic required to process/transform that data (the business logic), when not making use of Eloquent ORM or the Model paradigm? Making the controller fat with DB queries and logic seems like a messy solution, but at the same time a lot of the Laravel DB example code does place logic in Controller subclasses.
So I'll offer an approach that is I think accomplishes what you are asking. In the API I developed, I used the route/api.php file to create the API endpoints. Each of these point to a Controller where the authentication and request validation is performed. The Controller then calls a Service class that handles all the business logic of the application and these are the real heavy lifting parts. The Service class makes calls to a Repository, which actually performs Model changes and saving.
I saw this used in another project several years ago and mimicked it for my projects. The code flow is shown below. Not sure if it will work for you, but I find it to be a very neat and keeps the code grouped together in logical ways.
Route => Controller => Service => Repository => Model
Here is an example of how you can setup your project without Eloquent.
Models are just data containers (records). They don't know how or where to store themselves. They are instantiated with some data and provide access for it:
class OrderRecord
{
protected $id;
protected $createdAt;
public function __construct($id, $createdAt = null)
{
$this->id = $id;
$this->createdAt = $createdAt ?: date('d-m-Y H:i:s');
}
public function getID()
{
return $this->id;
}
...
}
You read and write models only via repositories. Repository is just a class with your typical methods to retrieve/write one or multiple records (find, findAll, update, delete etc). It reads data, instantiates record(s) with it or take record(s), gets data from them and writes it. For example:
class OrderRepository
{
public function find($id): OrderRecord
{
// Here goes your querying. StdClass will be returned in this case
// that will be used to create new record.
$row = DB::table('orders')->find($id);
if ($row) {
return (new OrderRecord($row->id, $row->created_at));
} else {
// If not found you can throw an exception or return null
// (return type should be ?OrderRecord then) depending on
// how you want to design your workflow with repositories.
...
}
}
...
}
Lastly your business logic can be in your controllers. Your controllers should use repositories to get your model objects, work with them and the use repositories to store result if needed.
Obviously, you will need to implement base classes/interfaces for all your entities. Use dependency injection and Laravel's service container to glue everything together.
You can also extend this design by separating querying and mapping in your repository - you will have Repository classes that know only how to retrieve/store raw data and you will have Mapper classes that know how to create/retrieve raw data to/from your records (and serve as factories that repository will use to generate record objects from query results). If business logic also need to be interchangeable then you can also take business logic out of your controllers and put it into separate classes that your controller can utilize.
Here is an excellent article about repository-based approach and how you can extend it.

Why does Laravel have a contract/interface for nearly everything?

I was going through the Laravel's Illuminate and I noticed it has an interface for nearly every implementation.
What's the exact purpose of this? Does it have any current use, or is it more to make the framework as scaleable as possible?
In software engineering contracts are more valuable than their implementations.
Here's a few reasons:
You can test classes which depend on an interface without relying on an interface implementation (which itself may be buggy).
Example with PHPUnit :
//Will return an object of this type with all the methods returning null. You can do more things with the mock builder as well
$mockInterface = $this->getMockBuilder("MyInterface")->getMock();
$class = new ClassWhichRequiresInterface($mockInterface);
//Test class using the mock
You can write a class which uses a contract without needing an implementation e.g.
function dependentFunction(MyInterface $interface) {
$interface->contractMethod(); // Assume it's there even though it's not yet implemented.
}
Have a single contract but multiple implementations.
interface FTPUploader { /* Contract */ }
class SFTPUploader implements FTPUploader { /* Method implementation */ }
class FTPSUploader implements FTPUploader { /* Method implementation */ }
Laravel offers support of the last one using its service container as follows:
$app->bind(FTPUploader::class, SFTPUploader::class);
resolve(FTPUploader::class); //Gets an SFTPUploader object
Then there's also the fact that its easier to document interfaces since there's no actual implementations in there so they're still readable.

Using dependency injection over laravel facades

I have read a number of sources that hint that laravel facade's ultimately exist for convenience and that these classes should instead be injected to allow loose coupling. Even Taylor Otwell has a post explaining how to do this. It seems I am not the only one to wonder this.
use Redirect;
class Example class
{
public function example()
{
return Redirect::route("route.name");
}
}
would become
use Illuminate\Routing\Redirector as Redirect;
class Example class
{
protected $redirect;
public function __constructor(Redirect $redirect)
{
$this->redirect = $redirect
}
public function example()
{
return $this->redirect->route("route.name");
}
}
This is fine except that I am starting to find that some constructors and methods are beginning to take four+ parameters.
Since the Laravel IoC seems to only inject into class constructors and certain methods (controllers), even when I have fairly lean functions and classes, I am finding that constructors of the classes are becoming packed out with the needed classes that then get injected into the needed methods.
Now I am finding that if I continue down this approach that I will need my own IoC container, which feels like reinventing the wheel if I am using a framework like laravel?
For example I use services to control the business / view logic rather than controllers dealing with them - they simply route the views. So a controller will first take its corresponding service, then then the parameter in its url. One service function also needs to check the values from a form, so then I need Request and Validator. Just like that, I have four parameters.
// MyServiceInterface is binded using the laravel container
use Interfaces\MyServiceInterface;
use Illuminate\Http\Request;
use Illuminate\Validation\Factory as Validator;
...
public function exampleController(MyServiceInterface $my_service, Request $request, Validator $validator, $user_id)
{
// Call some method in the service to do complex validation
$validation = $my_service->doValidation($request, $validator);
// Also return the view information
$viewinfo = $my_service->getViewInfo($user_id);
if ($validation === 'ok') {
return view("some_view", ['view_info'=>$viewinfo]);
} else {
return view("another_view", ['view_info'=>$viewinfo]);
}
}
This is a single example. In reality, many of my constructors already have multiple classes being injected (Models, Services, Parameters, Facades). I have started to 'offload' the constructor injection (when applicable) to method injection, and have the classes calling those methods use their constructors to inject dependencies instead.
I have been told that more than four parameters for a method or class constructor as a rule of thumb is bad practice / code smell. However I cannot see how you can really avoid this if you choose the path of injecting laravel facades.
Have I got this idea wrong? Are my classes / functions not lean enough? Am I missing the point of laravels container or do I really need to think of creating my own IoC container? Some others answers seems to hint at the laravel container being able to eliminate my issue?
That said, there doesn't seem to be a definitive consensus on the issue...
This is one of the benefits of constructor injection - it becomes obvious when you class is doing to much, because the constructor parameters grow too large.
1st thing to do is split up controllers that have too many responsibilities.
Say you have a page controller:
Class PageController
{
public function __construct(
Request $request,
ClientRepositoryInterface $clientrepo,
StaffRepositortInterface $staffRepo
)
{
$this->clientRepository = $clientRepo;
//etc etc
}
public function aboutAction()
{
$teamMembers = $this->staffRepository->getAll();
//render view
}
public function allClientsAction()
{
$clients = $this->clientRepository->getAll();
//render view
}
public function addClientAction(Request $request, Validator $validator)
{
$this->clientRepository->createFromArray($request->all() $validator);
//do stuff
}
}
This is a prime candidate for splitting into two controllers, ClientController and AboutController.
Once you have done that, if you still have too many* dependencies, its time to look for what i will call indirect dependancies (because i cant think of the proper name for them!) - dependencies that are not directly used by the dependant class, but instead passed on to another dependency.
An example of this is addClientAction - it requires a request and a validator, just to pass them to the clientRepostory.
We can re factor by creating a new class specifically for creating clients from requests, thus reducing our dependencies, and simplifying both the controller and the repository:
//think of a better name!
Class ClientCreator
{
public function __construct(Request $request, validator $validator){}
public function getClient(){}
public function isValid(){}
public function getErrors(){}
}
Our method now becomes:
public function addClientAction(ClientCreator $creator)
{
if($creator->isValid()){
$this->clientRepository->add($creator->getClient());
}else{
//handle errors
}
}
There is no hard and fast rule as to what number of dependencies are too many.
The good news is if you have built your app using loose-coupling, re-factoring is relatively simple.
I would much much rather see a constructor with 6 or 7 dependencies than a parameterless one and a bunch of static calls hidden throughout the methods
One issue with facades is that additional code has to be written to support them when doing automated unit testing.
As for solutions:
1. Resolving dependencies manually
One way of resolving dependencies, if you do not wish to do it via. constructors or methods injection, is to call app() directly:
/* #var $email_services App\Contracts\EmailServicesContract
$email_services = app('App\Contracts\EmailServicesContract');
2. Refactoring
Sometimes when I find myself passing too many services, or dependencies into a class, maybe I have violated the Single Responsibility Principe. In those cases, maybe a re-design is needed, by breaking the service or dependency into smaller classes. I would use another service to wrap up a related group of classes to serve something as a facade. In essence, it'll be a hierarchy of services/logic classes.
Example: I have a service that generate recommended products and send it out to users via email. I call the service WeeklyRecommendationServices, and it takes in 2 other services as dependency - a Recommendation services which is a black-box for generating the recommendations (and it has its own dependencies -- perhaps a repo for products, a helper or two), and an EmailService which maybe has Mailchimp as a dependency). Some lower-level dependencies, such as redirects, validators, etc. will be in those child services instead of the service that acts as the entry point.
3. Use Laravel global functions
Some of the Facades are available as function calls in Laravel 5. For instance, you can use redirect()->back() instead of Redirect::back(), as well as view('some_blade) instead of View::make('some_blade'). I believe it's the same for dispatch and some other commonly used facades.
(Edited to Add) 4. Using traits
As I was working on queued jobs today, I also observe that another way to inject dependencies is by using traits. For instance, the DispathcesJobs trait in Laravel has the following lines:
protected function dispatch($job)
{
return app('Illuminate\Contracts\Bus\Dispatcher')->dispatch($job);
}
Any class that uses the traits will have access to the protected method, and access to the dependency. It's neater than having many dependencies in the constructor or method signatures, is clearer (about what dependencies are involved) than globals and easier to customize than manual DI container calls. The drawback is that each time you invoke the function you have to retrieve the dependency from the DI container,
Class methods that form a part of the routing mechanism in Laravel (middleware, controllers, etc.) also have their type-hints used to inject dependencies - they don't all need to be injected in the constructor. This may help to keep your constructor slim, even though I'm not familiar with any four parameter limit rule of thumb; PSR-2 allows for the method definition to be stretched over multiple lines presumably because it's not uncommon to require more than four parameters.
In your example you could inject the Request and Validator services in the constructor as a compromise, since they're often used by more than one method.
As for establishing a consensus - Laravel would have to be more opinionated for applications to be similar enough to utilise a one-size-fits-all approach. An easier call though is that I think facades will go the way of the dodo in a future version.
Not so much an answer but some food for thought after talking to my colleagues who have made some very valid points;
If the internal structure of laravel is changed between versions (which has happened in the past apparently), injecting the resolved facade class paths would break everything on an upgrade - while using the default facades and helper methods mostly (if not completely) avoids this issue.
Although decoupling code is generally a good thing, the overhead of injecting these resolved facade class paths makes classes cluttered - For developers taking over the project, more time is spent trying to follow the code which could be spent better on fixing bugs or testing. New developers have to remember which injected classes are a developers and which are laravels. Developers unfamiliar with laravel under the hood have to spend time looking up the API. Ultimately the likelihood of introducing bugs or missing key functionality increases.
Development is slowed and testability isn't really improved since facades are already testable. Rapid development is a strong-point of using laravel in the first place. Time is always a constraint.
Most of the other projects use laravel facades. Most people with experience using laravel use facades. Creating a project that doesn't follow the existing trends of previous projects slows things down in general. Future inexperienced (or lazy!) developers may ignore facade injection and the project may end up with a mixed format. (Even code reviewers are human)
Well your thoughts and concerns and correct and I had them as well.
There are some benefits of Facades ( I generally dont use them ), but if you do use just I would suggest using them only in the controllers, as the controllers are just entry and exit points for me at least.
For the example you gave I'll show how I generally handle it:
// MyServiceInterface is binded using the laravel container
use Interfaces\MyServiceInterface;
use Illuminate\Http\Request;
use Illuminate\Validation\Factory as Validator;
...
class ExampleController {
protected $request;
public function __constructor(Request $request) {
// Do this if all/most your methods need the Request
$this->request = $request;
}
public function exampleController(MyServiceInterface $my_service, Validator $validator, $user_id)
{
// I do my validation inside the service I use,
// the controller for me is just a funnel for sending the data
// and returning response
//now I call the service, that handle the "business"
//he makes validation and fails if data is not valid
//or continues to return the result
try {
$viewinfo = $my_service->getViewInfo($user_id);
return view("some_view", ['view_info'=>$viewinfo]);
} catch (ValidationException $ex) {
return view("another_view", ['view_info'=>$viewinfo]);
}
}
}
class MyService implements MyServiceInterface {
protected $validator;
public function __constructor(Validator $validator) {
$this->validator = $validator;
}
public function getViewInfo($user_id, $data)
{
$this->validator->validate($data, $rules);
if ($this->validator->fails()) {
//this is not the exact syntax, but the idea is to throw an exception
//with the errors inside
throw new ValidationException($this->validator);
}
echo "doing stuff here with $data";
return "magic";
}
}
Just remember to break your code to small individual pieces that each one handles his own responsibility.
When you properly break your code, in most cases you will not have so many constructor parameters, and code will be easily testable and mocked.
Just one last note, if you are building a small application or even a page in a huge application for example a "contact page" and "contact page submit", you can surely do everything in the controller with facades, it simply depends on the complexity of the project.
I love the laravel due to its beautiful architecture.Now as from my approach i wouldnt inject all the facades in to the controller method only why? Injecting Redirect facades only in controller wrong practices as it might need in other. And mainly the things that are mostly used should be declared for all while for those who uses some or only then its best practice to inject them via method as when you declare at top it will hamper in your memory optimization as well as the speed of your code. Hope this would help

Where to load controller dependency classes?

I'm making my own primitive MVC framework with PHP, and I'm wondering where I should load/instantiate corresponding controller dependencies?
In the constructor of each controller (tightly coupled) or inject them (loosely coupled)?
The only part of the latter that I'm not too sure of is for the dependencies to be instantiated on bootstrap level, outside of the MVC paradigm, before being injected. Not every controller uses the exact same dependencies besides the default parent ones. I would have to instantiate them all, which would also create a lot of overhead.
I've seen some existing frameworks do it like $this->load->model('model'); // CodeIgniter in the constructor, but I have no clue on why they're doing it like that.
I would suggest you inject the dependencies, so your controllers are less coupled to your framework. This will make a switch to another framework easier.
About instantiating dependencies: I suggest you use (or implement) a dependency injection container. This container should contain factories that can instantiate services.
In an ideal situation your controllers are services too (meaning they too have factories in the dependency injection container).
This way only the controller you need for a particular request will be instantiated, and therefor only its dependencies are instantiated.
When building you own framework, this means that after the routing phase (when the correct controller is known), the framework should grab that controller from the container. The container itself will make sure all dependencies that are needed will be provided.
Have a look at Pimple for an example of a simple dependency injection container.
PS: That line from CodeIgniter looks a lot like the service locator pattern. This pattern is similar to dependency injection, but does not provide full inversion of control.
Q: Where should i load/instantiate corresponding controller dependencies?
There are multiple ways.
The load and instantiation concepts are basically "before/outside" and "after/inside".
Before and outside means, that you load the file containing a class (which you want to instantiate and pass to the controller), before you load the controller.
But how do you know, what the controller needs, before loading the controller? Uh..
Dependency Description Files
A description file comes into play, describing the wiring between your controller and it's dependencies. In other words, you can see the dependencies of your controller by looking at it's dependency description file. This concept is often used by Dependency Injection tools, which analyze the object and pull the dependencies names out automatically. It's also possible to maintain such a wiring configuration file manually. But it's tedious.
Service Locator
A Service Locator is a instantiation helper for dependencies.
Basically, it contains the same information like a dependency description file, but this time in form of a registry. The link between parts of your application becomes this registry.
Both strategies introduce overhead. It's a trade-off. When you change the perspective and look at things from an application with maybe 500+ classes, then you realize that a dependency injection tool is sometimes worth it.
Manual Injection
via Constructor Injection.
After and inside means, that you load the file containing your controller and then start to care about the dependencies.
At this point the class is not instantiated, yet, but the autoloader might do it's dirty deeds behind the scene. He evaluates the use statements at the top of your controller file. The use statements declare namespaced classes, which the autoloader resolves to actuall files and loads them. You might then start to use these classes as dependencies in your controller. This is probably the easiest way to solve your problem and i strongly suggest looking into the topics autoloading with namespaces and use-statements.
When the class is instantiated, you have the following possiblities:
use might use Setter Injection or Reference Injection to set the dependencies to the object. This requires that your Constructor Dependencies are already solved or your constructor is empty.
It's possible to combine these strategies.
Q: What does this do $this->load->model('model'); // CodeIgniter?
CodeIgniter is a legacy application framework. It was created in times, when namespaced autoloading wasn't available. $this->load is a basic class loading helper. This is the opposite of an "auto"loader, (which surprise, surprise) loads things automatically.
CodeIgniters loader class is used to load various other classes, like libraries or files from the view, helpers, models or user defined stuff. This is again the concept of a registry. Here the registry just knowns where things are in your application layout and resolves them. So $this->load->model('model'); means that the modelfunction must have some piecies of information, about the position of model files in your application.
You provide a model name and the path for the file is constructed by model.
And this is exaclty what it does (except a bit of overhead): https://github.com/EllisLab/CodeIgniter/blob/develop/system/core/Loader.php#L223.
Since I'm a Symfony developer, I can only give you a reference to Symfony.
I think you should do like they are doing in Symfony by thinking about what you need in each
Controller object.
At least, you need :
a Request object
and a Model loader object that gives you every Model you need.
Create a BaseController that implements these few functions and then extend it with custom Controllers.
You can also take a look on Silex : http://silex.sensiolabs.org/ a Micro Framework
Hope it helps.
When do you say "In the constructor" you mean to pass in the conatiner and pull the dependencies from them (in the constructor)?
<?php
class SomeController
{
public function __construct($container)
{
$this->service1 = $contanier->get('service1);
}
//...
}
I advice against that, though simpler and easier you will be coupling your controllers to the container thus using a ServiceLocator instead of truly inversion of control.
If you want your controllers to be easy unit-testable you should use inversion of control:
class SomeController
{
public function __construct($service1)
{
$this->service1 = $service1;
}
//...
}
And you can even create your controller as a service inside the container:
// this uses Pimple notation, I hope you get the point
$container['controller'] = function($c) {
return SomeController($c['service1']);
}
Use proxy services to lazy load them
Also if your controllers needs more than some services and you won't be using all of them you can:
1) Use proxy services in order to lazy load the service only when they are really needed
<?php
class ProxyService
{
/**
* #var Service1Type
*/
private $actualService;
public function __construct()
{
$this->actualService = null;
}
private function initialize()
{
$this->actualService = new Service1(); // This operation may take some time thus we deferred as long as possible
}
private function isInitialized()
{
return $this->actualService === null;
}
public function someActionOnThisService()
{
if (!$this->isInitalized()) {
$this->initalize();
}
$this->actualService->someActionOnThisService();
}
There you have a simple proxy object with lazy loading. You may want to check the fantastic Proxy Manager Library if you want to go that route
2) Split your controller
If your contoller has too many dependencies, you may want to split it.
In fact you may want to read the proposal by Paul M. Jones (lead developer of Aura Framework) about MVC-Refinement, IMHO is a good read even though you may not fully agree with it.
Even if you split your controller in order to reduce the dependencies, lazy loading your dependencies is a good idea (obviously you'll have to check weather if its doable in your context: more work in order to gain more speed).
Maybe you need to define __autoload() function before you try to load the Classes which is not loaded yet. Like:
function __autoload($className) {
require "/path/to/the/class/file/$className.php";
}
My example is very very simple to auto require the file which the class definition is in.
You can also use if-else statement or switch statement in that function to fit your own situations smartly.
The __autoload() function is called when PHP doesn't find the class definition, works for new, class_exists(), call_user_method(), etc, and absolutely for your dependences/parents classes. If there is still no class definition after __autoload() is called, PHP will generate an error.
Or you can use spl_autoload_register() function instead of __autoload() more gracefully.
For more information, you might want to see:
http://php.net/manual/en/function.autoload.php
http://php.net/manual/en/function.spl-autoload-register.php

advantage of repository pattern in laravel against instantiating a model in a controller constructor

let's take two example.
Example 1 (Repository pattern)
Interface
interface FooInterface {
public function all();
}
Model(Using it in a loose term)
class FooModel implements FooInterface {
public function all()
{
return DB::('sometable')->get();
}
}
Service Provider
class FooServiceProvider extends ServiceProvider {
public function register()
{
$this->app->bind(
'Foo\FooInterface',
'Foo\FooModel'
);
}
config/app.php
'providers' => array(
// --
'Foo\FooServiceProvider'
),
And at last the controller:
use Foo\FooInterface as Model;
public function __construct(Model $model)
{
$this->model = $model;
}
Now i can access the methods as $this->model->all(). that's great! Let's look at the 2nd example.
Example 2:
controller:
public function __construct()
{
$this->model = new \Foo\FooModel();
}
now i can also access the same method as $this->model->all();
Question
As i read, the advantage of using repository pattern is, in future, easily configurable/changeable interface system. e.g.
if i change the db system, i just need to change, the bindings in the service provider.
But, i can also just easily change the model instaintiation in the controller construct to achieve the same. like, changing $this->model = new \Foo\FooModel() to $this->model = new \Bar\BarModel(); where BarModel will hold the methods of different system.
What exactly i am missing here in the aspect of advantages of a repository pattern.? or in this particular case, repository pattern doesn't give much advantage yet, in some other case it may? if that's a yes, what can be that situation?
p.s. the term model is used just for the convenince.
Being prepared for switching databases is one of the most annoying arguments one can give for the repository pattern. This one is usually followed by the ignorant "I'll never switch databases." If i had an upvote for each time I had this conversation...
Now imagine you want to add a back-end like caching or some search engine to optimize searches. This would fit really well in a repository pattern.
The general key benefit of the repository pattern is that all changes related to the back-end are more manageable than otherwise.
To demonstrate why you wouldn't want this stuff in a model; If you want to migrate a model's attributes the model needs to be fetched from the back-end differently. You might need two models in some cases. When you have this all in one model you need to apply a lot of hackery to make this even work. If the repository manages these changes the models stay clear and your code becomes manageable again.
It really comes down to how you have set-up your code. In your particular case, there wouldn't appear to be much benefit.
But what if your code required you to have multiple instantiations of your model across many different controllers? For example, maybe you have a model to your user repository. There may be many controllers which need to get information about the user.
Then it would be a hassle to go through all your controllers changing all the references (i.e. your example 2). Much better to just change the repository once (i.e. your example 1).
There is never one size fits all in coding. The best you can do is code for what you need now, with an awareness of any potential solutions which may aid flexibility in the future. My view is that the repository pattern is one of those solutions which aids flexibility. You may never need to change the model, or move to a different database, but the effort in coding with it now is minimal compared to the hassle you will have if you ever did want to change your db.

Categories