I have read a lot of articles on developing classes (I am using php), with the tag lines :
'scalable, robust, maintainable and extensible'.
But as a beginner, I have been creating classes that are, in my words, "just abstracted". Meaning I just separated a bunch or repetitive codes and put them in a class and provide methods for accessing common tasks.
The thing is, I can't find a way to make my class extensible (I know the concept of abstract classes and such, I am even using them, but just to define methods that my other classes will follow). The thing is, I always find myself editing the core class just to add functionlities.
Any tips on making my class extensible? (I have googled on this and everything that pops out are explanations of abstract classes, interfaces and OOP, no discussions on pointers or some tips for making extensible classses).
Oh, btw, go easy on me, I have started "actual" oop programming 9 mos ago (the university I'm from had me going on theories on OOP, but they had us working PROCEDURALLY, because it's faster and it meets damn project deadlines, and that went on for 4 years until I graduated).
You should check out the book Design Patterns: Elements of Reusable Object-Oriented Software
The problem with making extensible classes, as you've discovered, is decomposing the system into useful and reusable objects.
The task is difficult because many factors come into play: encapsulation, granularity, dependency, flexibility, performance, evolution, reusability, and on and on.
Are you trying to model some real world scenario, or are you focusing on communication / collaboration and dependencies inside your application?
Here's an example that I think kinda demonstrates what you are looking for. There are certainly a far more, far better examples:
I wanted to develop a caching system that offered my developers a simple, normalized API no matter what / where they were caching something. What do I want in a caching system (at the basic level)?
I want to be able to cache something (set)
I want to be able to retrieve that something (get)
I want to be able to invalidate the cache (delete)
I came up with this:
abstract class MyNs_Cache
{
abstract public function Set($key, $data, $ttl);
abstract public function Get($key);
abstract public function Delete($key, $ttl);
}
There's my extensible base class. I've then got three caching classes MyNs_Cache_Fs, MyNs_Cache_Apc and MyNs_Cache_Memcache
class MyNs_Cache_Fs
{
...
public function Set($key, $data, $ttl)
{
// here I use fopen/fwrite/etc. to create the cached data
}
public function Get($key)
{
// here I retrieve the file from the filesystem (if it exists)
}
public function Delete($key) { ... }
}
That's fairly straight forward. It implements the cache in terms of a FileSystem. It doesn't offer anything past my original class.
class MyNs_Cache_Apc
{
...
public function Set($key, $data, $ttl)
{
return apc_add($key, $data, $ttl); // NOT A FILESYSTEM CALL
}
public function Get($key) { ... } // you get the idea.
// This is specific to APC, so I add the functionality HERE
// NOT in my main Caching class.
public function PurgeCache()
{
return apc_clear_cache();
}
}
My APC cache does everything I want in a caching system (set/get/delete) but it also offers the ability to clear the entire cache (something that's not useful for my FileSystem cache and impossible with memcached)
class MyNs_Cache_Memcache
{
// Memcached needs a pool of servers. APC and filesystem don't.
private $servers = array(..);
// It also uses a memcached object.
private $conn;
public function __construct()
{
$this->conn = new Memcached;
foreach ($this->$servers as $server)
$this->AddServer($server);
}
... // we do all the standard stuff using memcached methods
// We also want to be able to manage our connection pool
public function AddServer($server)
{
$this->conn->addServer(...);
}
// And in some cases, we use inc/dec from memcached
// APC doesn't have this, and it makes little sense in a filesystem
public function Increment($key) { ... }
}
Now I know that I can always get one of my cache objects and just in with $obj->Get('some_key') and I'll always get a result.
Likewise, I also have access to functionality specific to what I'm currently trying to work with.
You don't need to edit your core class to add functionality you can overwrite a method in a child class, eg:
class A {
public function filter_string($str){
return str_replace ('foo', 'bar', $str);
}
}
class B extends A {
public function filter_string($str){
return str_replace ('machin', 'chose', parent::filter_string ($str));
}
}
$a = new A;
echo $a->filter_string('foo machin'); // echoes 'bar machin'
$b = new B;
echo $b->filter_string('foo machin'); // echoes 'bar chose'
Related
Through my multiple studies I have come across the factory method of setting session and database objects which I have been using while in development. What I am wondering is, putting aside personal preference (although I will soak in any opinions anyone has), does this general method work, and is it efficient (meaning, am I using it correctly)? If it is not, do you have suggestions for how to improve it?
Background
I created the code this way so as to pass a database and session object to the class upon calling the class. I wanted to be able to pass along the relevant objects/references so that they could be used.
The Call Class
This class is meant to call static functions, like so:
class CALL {
public static $_db, $_session;
public status function class1() {
$function = new class1();
$function->set_session(self::$_session);
$function->set_database(self::$_db);
return $function;
}
public status function class2() {
...
}
...
}
The _set class
class _set {
public $_db, $_session;
public function __construct() { ... }
public function set_database($_db) {
$this->_db = $_db;
}
public function set_session($_session) {
$this->_session = $_session;
}
}
Now the classes referenced.
class class1 extends _set {
function __construct() { ... }
function function1() { return "foo"; }
...
}
So, moving forward, the classes would be called using CALL::class1 or CALL::class2. After that, they can be accessed as per usual, aka:
CALL::$_db = $database->_dbObject;
CALL::$_session = $_SESSION;
$class1 = CALL::class1;
echo $class1->function1(); //prints "foo".
Read about Dependency Injection . Small suggestion from my point of view, you should never create objects like $db or $session inside other objects. You should rather inject them through constructor or setter method. It will make your code less dependant on a specific classes and it will be easier to replace all dependencies almost without refactoring (actually without one if you know hot to use interfaces).
If anyone stumbles on this, I will share with you what my solution was.
Although this exercise helped me to learn a lot, and I am sure I could take the time to create a VERY highly functional factory/Container, because this is not integral to my program and not even unique, I finally bowed to the age old wisdom of not repeating something that has already been done.
I utilized Pimple, a lightweight library that uses PHP closures to create function calls. Now, I can haave the flexibility of determining which dependency injections I want, but I also only need to inject them once. Future calls, even when they create new instances, will replicate them. While I think that, in theory, my project was workable as it was, it did indeed have the unfortunate issue of requiring you to go into the container to make changes. With Pimple I do not need to do that. So I've tossed by Container class and picked up a lightweight program from the maker of Symfony. While this may not be the best answer for everyone, it was for me. Cheers!
Lately I have been trying to create my own PHP framework, just to learn from it (As we may look into some bigger and more robust framework for production). One design concept I currently have, is that most core classes mainly work on static functions within classes.
Now a few days ago, I've seen a few articles about "Static methods are death to testability". This concerned me as.. yeah.. my classes contain mostly static methods.. The main reason I was using static methods is that a lot of classes would never need more than one instance, and static methods are easy to approach in the global scope. Now I'm aware that static methods aren't actually the best way to do things, I'm looking for a better alternative.
Imagine the following code to get a config item:
$testcfg = Config::get("test"); // Gets config from "test"
echo $testcfg->foo; // Would output what "foo" contains ofcourse.
/*
* We cache the newly created instance of the "test" config,
* so if we need to use it again anywhere in the application,
* the Config::get() method simply returns that instance.
*/
This is an example of what I currently have. But according to some articles, this is bad.
Now, I could do this the way how, for example, CodeIgniter does this, using:
$testcfg = $this->config->get("test");
echo $testcfg->foo;
Personally, I find this harder to read. That's why I would prefer another way.
So in short, I guess I need a better approach to my classes. I would not want more than one instance to the config class, maintain readability and have easy access to the class. Any ideas?
Note that I'm looking for some best practice or something including a code sample, not some random ideas. Also, if I'm bound to a $this->class->method style pattern, then would I implement this efficiently?
In response to Sébastien Renauld's comments: here's an article on Dependency Injection (DI) and Inversion of Control (IoC) with some examples, and a few extra words on the Hollywood principle (quite important when working on a framework).
Saying your classes won't ever need more than a single instance doesn't mean that statics are a must. Far from it, actually. If you browse this site, and read through PHP questions that deal with the singleton "pattern", you'll soon find out why singletons are a bit of a no-no.
I won't go into the details, but testing and singletons don't mix. Dependency injection is definitely worth a closer look. I'll leave it at that for now.
To answer your question:
Your exaple (Config::get('test')) implies you have a static property in the Config class somewhere. Now if you've done this, as you say, to facilitate access to given data, imagine what a nightmare it would be to debug your code, if that value were to change somewhere... It's a static, so change it once, and it's changed everywhere. Finding out where it was changed might be harder than you anticipated. Even so, that's nothing compared to the issues someone who uses your code will have in the same situation.
And yet, the real problems will only start when that person using your code wants to test whatever it is he/she made: If you want to have access to an instance in a given object, that has been instantiated in some class, there are plenty of ways to do so (especially in a framework):
class Application
{//base class of your framework
private $defaulDB = null;
public $env = null;
public function __construct($env = 'test')
{
$this->env = $env;
}
private function connectDB(PDO $connection = null)
{
if ($connection === null)
{
$connection = new PDO();//you know the deal...
}
$this->defaultDB = $connection;
}
public function getDB(PDO $conn = null)
{//get connection
if ($this->defaultDB === null)
{
$this->connectDB($conn);
}
return $this->defaultDB;
}
public function registerController(MyConstroller $controller)
{//<== magic!
$controller->registerApplication($this);
return $this;
}
}
As you can see, the Application class has a method that passes the Application instance to your controller, or whatever part of your framework you want to grant access to scope of the Application class.
Note that I've declared the defaultDB property as a private property, so I'm using a getter. I can, if I wanted to, pass a connection to that getter. There's a lot more you can do with that connection, of course, but I can't be bothered writing a full framework to show you everything you can do here :).
Basically, all your controllers will extend the MyController class, which could be an abstract class that looks like this:
abstract class MyController
{
private $app = null;
protected $db = null;
public function __construct(Application $app = null)
{
if ($app !== null)
{
return $this->registerApplication($app);
}
}
public function registerApplication(Application $app)
{
$this->app = $app;
return $this;
}
public function getApplication()
{
return $this->app;
}
}
So in your code, you can easily do something along the lines of:
$controller = new MyController($this);//assuming the instance is created in the Application class
$controller = new MyController();
$controller->registerApplication($appInstance);
In both cases, you can get that single DB instance like so:
$controller->getApplication()->getDB();
You can test your framework with easily by passing a different DB connection to the getDB method, if the defaultDB property hasn't been set in this case. With some extra work you can register multiple DB connections at the same time and access those at will, too:
$controller->getApplication->getDB(new PDO());//pass test connection here...
This is, by no means, the full explanation, but I wanted to get this answer in quite quickly before you end up with a huge static (and thus useless) codebase.
In response to comments from OP:
On how I'd tackle the Config class. Honestly, I'd pretty much do the same thing as I'd do with the defaultDB property as shown above. But I'd probably allow for more targeted control on what class gets access to what part of the config:
class Application
{
private $config = null;
public function __construct($env = 'test', $config = null)
{//get default config path or use path passed as argument
$this->config = new Config(parse_ini_file($config));
}
public function registerController(MyController $controller)
{
$controller->setApplication($this);
}
public function registerDB(MyDB $wrapper, $connect = true)
{//assume MyDB is a wrapper class, that gets the connection data from the config
$wrapper->setConfig(new Config($this->config->getSection('DB')));
$this->defaultDB = $wrapper;
return $this;
}
}
class MyController
{
private $app = null;
public function getApplication()
{
return $this->app;
}
public function setApplication(Application $app)
{
$this->app = $app;
return $this;
}
//Optional:
public function getConfig()
{
return $this->app->getConfig();
}
public function getDB()
{
return $this->app->getDB();
}
}
Those last two methods aren't really required, you could just as well write something like:
$controller->getApplication()->getConfig();
Again, this snippet is all a bit messy and incomplete, but it does go to show you that you can "expose" certain properties of one class, by passing a reference to that class to another. Even if the properties are private, you can use getters to access them all the same. You can also use various register-methods to control what it is the registered object is allowed to see, as I've done with the DB-wrapper in my snippet. A DB class shouldn't deal with viewscripts and namespaces, or autoloaders. That's why I'm only registering the DB section of the config.
Basically, a lot of your main components will end up sharing a number of methods. In other words, they'll end up implementing a given interface. For each main component (assuming the classic MVC pattern), you'll have one abstract base-class, and an inheritance chain of 1 or 2 levels of child classes: Abstract Controller > DefaultController > ProjectSpecificController.
At the same time, all of these classes will probably expect another instance to be passed to them when constructed. Just look at the index.php of any ZendFW project:
$application = new Zend_Application(APPLICATION_ENV);
$application->bootstrap()->run();
That's all you can see, but inside the application, all other classes are being instantiated. That's why you can access neigh on everything from anywhere: all classes have been instantiated inside another class along these lines:
public function initController(Request $request)
{
$this->currentController = $request->getController();
$this->currentController = new $this->currentController($this);
return $this->currentController->init($request)
->{$request->getAction().'Action'}();
}
By passing $this to the constructor of a controller class, that class can use various getters and setters to get to whatever it needs... Look at the examples above, it could use getDB, or getConfig and use that data if that's what it needs.
That's how most frameworks I've tinkered or worked with function: The application is kicks into action and determines what needs to be done. That's the Hollywood-principle, or Inversion of Control: the Application is started, and the application determines what classes it needs when. In the link I provided I believe this is compared to a store creating its own customers: the store is built, and decides what it wants to sell. In order to sell it, it will create the clients it wants, and provide them with the means they need to purchase the goods...
And, before I forget: Yes, all this can be done without a single static variable, let alone function, coming into play. I've built my own framework, and I've never felt there was no other way than to "go static". I did use the Factory pattern at first, but ditched it pretty quickly.
IMHO, a good framework is modular: you should be able to use bits of it (like Symfony's components), without issues. Using the Factory pattern makes you assume too much. You assume class X will be available, which isn't a given.
Registering those classes that are available makes for far more portable components. Consider this:
class AssumeFactory
{
private $db = null;
public function getDB(PDO $db = null)
{
if ($db === null)
{
$config = Factory::getConfig();//assumes Config class
$db = new PDO($config->getDBString());
}
$this->db = $db;
return $this->db;
}
}
As opposed to:
class RegisteredApplication
{//assume this is registered to current Application
public function getDB(PDO $fallback = null, $setToApplication = false)
{
if ($this->getApplication()->getDB() === null)
{//defensive
if ($setToApplication === true && $fallback !== null)
{
$this->getApplication()->setDB($fallback);
return $fallback;//this is current connection
}
if ($fallback === null && $this->getApplication()->getConfig() !== null)
{//if DB is not set #app, check config:
$fallback = $this->getApplication()->getConfig()->getSection('DB');
$fallback = new PDO($fallback->connString, $fallback->user, $fallback->pass);
return $fallback;
}
throw new RuntimeException('No DB connection set #app, no fallback');
}
if ($setToApplication === true && $fallback !== null)
{
$this->getApplication()->setDB($fallback);
}
return $this->getApplication()->getDB();
}
}
Though the latter version is slightly more work to write, it's quite clear which of the two is the better bet. The first version just assumes too much, and doesn't allow for safety-nets. It's also quite dictatorial: suppose I've written a test, and I need the results to go to another DB. I therefore need to change the DB connection, for the entire application (user input, errors, stats... they're all likely to be stored in a DB).
For those two reasons alone, the second snippet is the better candidate: I can pass another DB connection, that overwrites the application default, or, if I don't want to do that, I can either use the default connection, or attempt to create the default connection. Store the connection I just made, or not... the choice is entirely mine. If nothing works, I just get a RuntimeException thrown at me, but that's not the point.
Magic methods would help you: see the examples about __get() and __set()
You should also take a look at namespaces: it may help you to get rid of some classes with static methods only.
I was trying to find a way to execute some code to alter the results of an objects methods without actually touching the object's code. One way I came up is using a decorator:
class Decorator {
private $object;
public function __construct($object) {
if (!is_object($object)) {
throw new Exception("Not an object");
}
$this->object = $object;
}
protected function doSomething(&$val) {
$val .= "!!";
}
public function __call($name, $arguments) {
$retVal = call_user_func_array(array($this->object, $name), $arguments);
$this->doSomething($retVal);
return $retVal;
}
}
class Test extends BaseTest {
public function run() {
return "Test->run()";
}
}
$o = new Decorator(new Test());
$o->run();
That way it will work properly but it has one disadvantage which makes it unusable for me right now - it would require replacing all lines with new Test() with new Decorator(new Test()) and this is exactly what I would like to avoid - lots of meddling with the existing code. Maybe something I could do in the base class?
One does not simply overload stuff in PHP. So what you want cannot be done. But the fact that you are in trouble now is a big tell your design is flawed. Or if it is not your code design the code you have to work with (I feel your pain).
If you cannot do what you want to do it is because you have tightly coupled your code. I.e. you make use of the new keyword in classes instead of injecting them (dependency injection) into the classes / methods that need it.
Besides not being able to easily swap classes you would also have a gard time easily testing your units because of the tight coupling.
UPDATE
For completeness (for possible future readers): if the specific class would have been namespaced and you were allowed to change the namespace you could have thought about changing the namespace. However this is not really good practice, because it may screw with for example autoloaders. An example of this would be PSR-0. But considering you cannot do this either way I don't see it is possible what you want. P.S. you should not really use this "solution".
UPDATE2
It looks like there has been some overload extension at some time (way way way back), but the only thing I have found about it is some bug report. And don't count on it still working now either way. ;-) There simply is no real overloading in PHP.
Found something (a dead project which doesn't work anymore that enables class overloading): http://pecl.php.net/package/runkit
Possibly another project (also dead of course): http://pecl.php.net/package/apd
I am not a PHP programmer, but I think that AOP is what you are looking for. You can try some frameworks, for example listed in this answer.
From the Wikipedia article on the decorator pattern:
Subclass the original "Decorator" class into a "Component" class
So I think you're supposed to keep the class to be decorated private and expose only the already-decorated class.
I know there are loads of questions on this, I have done quite a bit of reading. I'd like to ask this in context of my project to see what suggestions you may have.
I have quite a large web application with many classes, e.g. users and articles (which i consider to be the main classes) and smaller classes such as images and comments. Now on a page, lets say for example an article, it could contain many instances of images and comments. Makes sense right? Now on say an articles page I call a static method which returns an array of article objects.
That's the background, so here are the questions.
Since building a large amount of the app I came to realise it would be very useful to have a core system class containing settings and shared functions. There for I extended all of my classes with a new core class. Seemed relatively simple and quick to implement. I know CodeIgniter does something similar. I feel now though my app is becoming a bit messy.
Question Is this a good idea? Creating an instance of core is exactly what I want when calling an instance of an article, but what about when i'm creating multiple instances using the static method, or calling multiple images or comments on a page. I'm calling the core class unnecessarily right? Really it only needs to be called once per page (for example the constructor defines various settings from the database, I don't want to this every time, only once per page obviously), but all instances of all classes should have access to that core class. Sounds exactly like I want the singleton approach, but I know that's a waste of time in PHP.
Here's an idea of what my code looks like at this point. I've tried to keep it as simple as I can.
class core {
public function __construct(){
...define some settings which are retrieve from the database
}
public function usefulFunction(){
}
}
class user extends core {
public function __construct(){
parent::__construct();
}
public function getUser($user_id){
$db = new database();
$user = /* Get user in assoc array from db */
$this->__setAll($user);
}
public static function getUsers(){
$db = new database();
$users = /* Get users from database in assoc array from db */
foreach($users as $user) {
$arrUsers[] = new self();
$arrUsers[]->__setAll($user);
}
return $arrUsers;
}
private function __setAll($attributes) {
foreach($attributes as $key => $value)
{
$this->__set($key, $value);
}
}
public function __set($key, $value) {
$this->$key = $value;
}
}
The other issue I'm having is efficiently using/sharing a database connection. Currently each method in a class requiring a database connection creates a new instance of the database, so on a page I might be doing this 5 or 10 times. Something like the dependency injection principle sounds much better.
Question Now if i'm passing the instance of the DB into the new user class, i know I need something like this...
class user{
protected $db;
public function __construct($db){
$this->db = $db;
}
... etc
}
$db = new database();
$user = new user($db);
... but when I want to run the static function users::getUsers() what is the best way to gain access to the database instance? Do i need to pass it as a variable in each static method? (there are many static methods in many classes). It doesn't seem like the best way of doing it but maybe there isn't another way.
Question If extending all of my classes off the core class as suggested in part 1, can I create an instance of the DB there and access that some how?
Question I also have various files containing functions (not oop) which are like helper files. What's the best way for these to access the database? Again i've been creating a new instance in each function. I don't really want to pass the db as a parameter to each one. Should I use globals, turn these helper files into classes and use dependency injection or something different all together?
I know there is lots of advice out there, but most info and tutorials on PHP are out of date and don't ever seem to cover something this complex...if you can call it complex?
Any suggestions on how to best layout my class structure. I know this seems like a lot, but surely this is something most developers face everyday. If you need any more info just let me know and thanks for reading!
You asked in a comment that I should elaborate why it is a bad idea. I'd like to highlight the following to answer that:
Ask yourself if you really need it.
Do design decisions for a need, not just because you can do it. In your case ask yourself if you need a core class. As you already have been asked this in comments you wrote that you actually do not really need it so the answer is clear: It is bad to do so because it is not needed and for not needing something it introduces a lot of side-effects.
Because of these side-effects you don't want to do that. So from zero to hero, let's do the following evolution:
You have two parts of code / functionality. The one part that does change, and the other part that is some basic functionality (framework, library) that does not change. You now need to bring them both together. Let's simplify this even and reduce the frame to a single function:
function usefulFunction($with, $four, $useful, $parameters)
{
...
}
And let's reduce the second part of your application - the part that changes - to the single User class:
class User extends DatabaseObject
{
...
}
I already introduced one small but important change here: The User class does not extend from Core any longer but from DatabaseObject because if I read your code right it's functionality is to represents a row from a database table, probably namely the user table.
I made this change already because there is a very important rule. Whenver you name something in your code, for example a class, use a speaking, a good name. A name is to name something. The name Core says absolutely nothing other that you think it's important or general or basic or deep-inside, or that it's molten iron. No clue. So even if you are naming for design, choose a good name. I thought, DatabaseObject and that was only a very quick decision not knowing your code even, so I'm pretty sure you know the real name of that class and it's also your duty do give it the real name. It deserves one, be generous.
But let's leave this detail aside, as it's only a detail and not that much connected to your general problem you'd like to solve. Let's say the bad name is a symptom and not the cause. We play Dr. House now and catalog the symptoms but just to find the cause.
Symptoms found so far:
Superfluous code (writing a class even it's not needed)
Bad naming
May we diagnose: Disorientation? :)
So to escape from that, always do what is needed and choose simple tools to write your code. For example, the easiest way to provide the common functions (your framework) is as easy as making use of the include command:
include 'my-framework.php';
usefuleFunction('this', 'time', 'really', 'useful');
This very simple tow-line script demonstrates: One part in your application takes care of providing needed functions (also called loading), and the other part(s) are using those (that is just program code as we know it from day one, right?).
How does this map/scale to some more object oriented example where maybe the User object extends? Exactly the same:
include 'my-framework.php';
$user = $services->store->findUserByID($_GET['id']);
The difference here is just that inside my-framework.php more is loaded, so that the commonly changing parts can make use of the things that don't change. Which could be for example providing a global variable that represents a Service Locator (here $services) or providing auto-loading.
The more simple you will keep this, the better you will progress and then finally you will be faced with real decisions to be made. And with those decisions you will more directly see what makes a difference.
If you want some more discussion / guidance for the "database class" please consider to take a read of the very good chapter about the different ways how to handle these in the book Patterns of Enterprise Application Architecture which somewhat is a long title, but it has a chapter that very good discusses the topic and allows you to choose a fitting pattern on how to access your database quite easily. If you keep things easy from the beginning, you not only progress faster but you are also much easier able to change them later.
However if you start with some complex system with extending from base-classes (that might even do multiple things at once), things are not that easily change-able from the beginning which will make you stick to such a decision much longer as you want to then.
You can start with an abstract class that handles all of your Database queries, and then constructs them into objects. It'll be easy to set yourself up with parameterized queries this way, and it will standardize how you interact with your database. It'll also make adding new object models a piece of cake.
http://php.net/manual/en/language.oop5.abstract.php
abstract class DB
{
abstract protected function table();
abstract protected function fields();
abstract protected function keys();
public function find()
{
//maybe write yourself a parameterized method that all objects will use...
global $db; //this would be the database connection that you set up elsewhere.
//query, and then pack up as an object
}
public function save()
{
}
public function destroy()
{
}
}
class User extends DB
{
protected function table()
{
//table name
}
protected function fields()
{
//table fields here
}
protected function keys()
{
//table key(s) here
}
//reusable pattern for parameterized queries
public static function get_user( $id )
{
$factory = new User;
$params = array( '=' => array( 'id' => $id ) );
$query = $factory->find( $params );
//return the object
}
}
You'll want to do your database connection from a common configuration file, and just leave it as a global variable for this pattern.
Obviously this is just scratching the surface, but hopefully it gives you some ideas.
Summarize all answers:
Do not use single "God" class for core.
It's better to use list of classes that make their jobs. Create as many class as you need. Each class should be responsible for single job.
Do not use singletones, it's old technique, that is not flexible, use dependecy injection container (DIC) instead.
First, the the best thing to do would be to use Singleton Pattern to get database instance.
class Db{
protected $_db;
private function __construct() {
$this->_db = new Database();
}
public static function getInstance() {
if (!isset(self::$_db)) {
self::$_db = new self();
}
return self::$_db;
}
}
Now you can use it like db::getInstance(); anywhere.
Secondly, you are trying to invent bicycle called Active Record pattern, in function __setAll($attributes).
In third, why do you wrote this thing in class that extends Core?
public function __construct(){
parent::__construct();
}
Finally, class names should be capitalized.
I have studied in php oop and stocked in the concept of reusable code.
I have seen an example like
interface iTemplate
{
public function setVariable($name, $var);
public function getHtml($template);
}
And implement it:
// Implement the interface
class Template implements iTemplate
{
private $vars = array();
public function setVariable($name, $var)
{
$this->vars[$name] = $var;
}
public function getHtml($template)
{
foreach($this->vars as $name => $value) {
$template = str_replace('{' . $name . '}', $value, $template);
}
return $template;
}
}
I can understand the code but not sure why it is reusable. Every time I want to add a new function in iTemplate interface, my Template class needs to be changed too. I don't understand the concept of "reuse". I appreciate any help. Thanks.
Interfaces aren't directly for code reuse. They are for abstraction. They enable classes that use the template to check for the interface instead of the base template class. That way it separates implementation from the interface declaration.
So if your method does something with a template class, checking for an object of instance template would hard code a dependency on that class. But in reality you don't care what class you get, you just care if it adheres to the iTemplate interface (since that's all you're calling anyway).
public function foo(Template $template) {
vs:
public function foo(iTemplate $template) {
Now, as far as code re-use, interfaces aren't really designed for that. Inheritance typically is. Basically think of inheritance as extending an abstraction. Let me give you an example:
If you were to create a set of classes for birds, you could approach it with inheritance and without it. Let's see how we might do it without:
interface iBird {
public function fly();
public function speak();
public function swim();
public function walk();
}
class Duck implements iBird {
public function fly() {
//Fly here
}
public function speak() {
// Quack here
}
public function swim() {
//Swim here
}
public function walk() {
//Walk here
}
}
class Turkey implements iBird {
public function fly() {
//Fly here, but limited
}
public function speak() {
//Make turkey sound here
}
public function swim() {
throw new Exception('Turkeys can not swim!');
}
public function walk() {
//Walk here
}
}
Now, this is a simple example, but you can see that in those two birds, the walk() functions will likely be identical (and hence violate DRY)...
Let's see how that might look with a single tier inheritance:
abstract class Bird implements iBird {
public function fly() {
//Fly here
}
abstract public function speak();
public function swim() {
//Swim here
}
public function walk() {
//Walk here
}
}
class Duck extends Bird {
public function speak() {
//Quack here
}
}
class Turkey extends Bird {
public function speak() {
//Make turkey sound here
}
public function swim() {
throw new Exception('Turkeys can not swim!');
}
}
Now, you can see we just re-used 3 of the methods! We didn't declare speak(), since it will be always overriden (since no two birds sound alike).
Sounds good right? Well, depending on our needs, we may want to add other abstract types. So lets say we were making a lot of different types of birds... We would have some that didn't swim, so we might create an abstract class NonSwimmingBird that extends Bird, but throws the exception for us. Or a NonFlyingBird, or a ShortRangeBird...
Now, we're really on the track as far as code re-use, but we're hitting a wall in another area. Suppose we have a bird that doesn't fly or swim. What class do we inherit from? Either way, we're duplicating code. So we need to find another way out. Well, how do we do it? Through Design Patterns... Instead of direct inheritance, we could use a decorator pattern to add those traits on the fly. (There are other patterns that can be used here, the point is to show that inheritance alone won't suit all needs. And Patterns alone won't either. You need a good architecture using both worlds based upon what your exact needs are)...
The point is, it all depends on your needs. If you only have 2 "classes" of objects you're going to architect something much simpler than if you are planning on having thousands. The point of what I wrote here is to demonstrate how you can use straight inheritance to enforce some DRY principals (but also how straight inheritance can cause code duplication as well). The big thing, is don't try to stick to DRY just because you don't want to repeat yourself. Stick to DRY, but make sure that you're combining and extending where it's reasonable to, otherwise you're creating yourself a maintenance headache. Stick to the Single Responsibility Principal, and you should be fine...
Interface writes only 1 time in beginning of development. And only after this writes other classes implements of this Interface. Interface - is a fundament.
Note: method setVariable isn't required. There are good magic methods in PHP as __get(), and __set().
Interfaces are usually useful in cases where you want something to be interchangeable. Imagine you'd build a Plugin aware application. You then have the interface iPlugin:
interface iPlugin {
public function init();
/* .. */
}
and all Plugins would implement that interface. A plugin manager could then easily check if a Plugin implements the interface and call the init() method on it.
Code doesn't need to be OO to be reusable, although in many cases that helps.
Code certainly doesn't need to use interfaces to be reusable, although again in some cases that will help.
The key to writing reusable code is to write code that is clearly written, well-commented, uses consistent naming and calling conventions, and is more general than it strictly needs to be for the problem at hand.
One of the simplest and most powerful techniques for writing reusable code in PHP is writing methods that accept either a variable number of arguments, or accept an associative array of parameters.
Often, code that didn't start out "intending" to be reusable turns out to be something you'll want to reuse. Typically, code starts "inline" and then you discover you need to do exactly, or nearly exactly, the same thing in more than one place. When you find yourself copying and pasting code it's time to refactor it as a function.
Similarly, when you find yourself wishing a function you had defined in file X would be really helpful in file Y, it's time to move it into a module.
The best way to learn all this is by experience. Some people will tell you to architect this stuff from the beginning, and that's certainly a good idea if you have the insight and experience to do so, but it's just as valid to do so from the bottom up, and it's probably the best way to learn.
Reusability of Object oriented Programming is the use of previous class or function or method in the present class but no problem of previous class.