unit testing and Static methods - php

Reading up and picking up on unit testing, trying to make sense of the following post on that explains the hardships of static function calls.
I don't clearly understand this issue. I have always assumed static functions were a nice way of rounding up utility functions in a class. For example, I often use static functions calls to initialise, ie:
Init::loadConfig('settings.php');
Init::setErrorHandler(APP_MODE);
Init::loggingMode(APP_MODE);
// start loading app related objects ..
$app = new App();
// After reading the post, I now aim for this instead ...
$init = new Init();
$init->loadConfig('settings.php');
$init->loggingMode(APP_MODE);
// etc ...
But, the few dozen tests I had written for this class are the same. I changed nothing and they still all pass. Am I doing something wrong?
The author of the post states the following:
The basic issue with static methods is they are procedural code. I have no idea how to unit-test procedural code. Unit-testing assumes that I can instantiate a piece of my application in isolation. During the instantiation I wire the dependencies with mocks/friendlies which replace the real dependencies. With procedural programing there is nothing to “wire” since there are no objects, the code and data are separate.
Now, I understand from the post that static methods create dependencies, but don't grasp intuitively why one cannot test the return value of a static method just as easily as a regular method?
I will be avoiding static methods, but I would of liked having an idea of WHEN static methods are useful, if at all. It seems from this post static methods are just about as evil as global variables and should be avoided as much as possible.
Any additional information or links on the subject would be greatly appreciated.

Static methods themselves aren't harder to test than instance methods. The trouble arises when a method--static or otherwise--calls other static methods because you cannot isolate the method being tested. Here is a typical example method that can be difficult to test:
public function findUser($id) {
Assert::validIdentifier($id);
Log::debug("Looking for user $id"); // writes to a file
Database::connect(); // needs user, password, database info and a database
return Database::query(...); // needs a user table with data
}
What might you want to test with this method?
Passing anything other than a positive integer throws InvalidIdentifierException.
Database::query() receives the correct identifier.
A matching User is returned when found, null when not.
These requirements are simple, but you must also setup logging, connect to a database, load it with data, etc. The Database class should be solely responsible for testing that it can connect and query. The Log class should do the same for logging. findUser() should not have to deal with any of this, but it must because it depends on them.
If instead the method above made calls to instance methods on Database and Log instances, the test could pass in mock objects with scripted return values specific to the test at hand.
function testFindUserReturnsNullWhenNotFound() {
$log = $this->getMock('Log'); // ignore all logging calls
$database = $this->getMock('Database', array('connect', 'query');
$database->expects($this->once())->method('connect');
$database->expects($this->once())->method('query')
->with('<query string>', 5)
->will($this->returnValue(null));
$dao = new UserDao($log, $database);
self::assertNull($dao->findUser(5));
}
The above test will fail if findUser() neglects to call connect(), passes the wrong value for $id (5 above), or returns anything other than null. The beauty is that no database is involved, making the test quick and robust, meaning it won't fail for reasons unrelated to the test like network failure or bad sample data. It allows you to focus on what really matters: the functionality contained within findUser().

Sebastian Bergmann agrees with Misko Hevery and quotes him frequently:
Stubbing and Mocking Static Methods
Unit-Testing needs seams, seams is where we prevent the execution of normal code path and is how we achieve isolation of the class under test. Seams work through polymorphism, we override/implement class/interface and then wire the class under test differently in order to take control of the execution flow. With static methods there is nothing to override. Yes, static methods are easy to call, but if the static method calls another static method there is no way to override the called method dependency.
The main issue with static methods is that they introduce coupling, usually by hardcoding the dependency into your consuming code, making it difficult to replace them with stubs or mocks in your Unit-Tests. This violates the Open/Closed Principle and the Dependency Inversion Principle, two of the SOLID principles.
You are absolutely right that statics are considered harmful. Avoid them.
Check the links for additional information please.
Update: note that while statics are still considered harmful, the capability to stub and mock static methods has been removed as of PHPUnit 4.0

I do not see any problem when testing static methods (at least none that doesn't exists in non-static methods).
Mock objects are passed to classes under test using dependency injection.
Mock static methods can be passed to classes under test using a suitable autoloader or manipulating the include_path.
Late static binding deals with methods calling static methods in the same class.

Related

Integration tests mocking facades vs injecting mocks

We have some legacy laravel projects which use facades in the classes.
use Cache;
LegacyClass
{
public function cacheFunctionOne()
{
$result = Cache::someFunction('parameter');
// logic to manipulate result
return $result;
}
public function cacheFunctionTwo()
{
$result = Cache::someFunction('parameter');
// different logic to manipulate result
return $result;
}
}
Our more recent projects use dependency injection of the underlying laravel classes that the facades represent as has been hinted at by Taylor Otwell himself. (We use constructor injection for each class, but to keep the example short, here I use method injection and use a single class.)
use Illuminate\Cache\Repository as Cache;
ModernClass
{
public function cacheFunctionOne(Cache $cache)
{
$result = $cache->someFunction('parameter');
// logic to manipulate result
return $result;
}
public function cacheFunctionTwo(Cache $cache)
{
$result = $cache->someFunction('parameter');
// different logic to manipulate result
return $result;
}
}
I know facades can be mocked
public function testExample()
{
Cache::shouldReceive('get')
->once()
->with('key')
->andReturn('value');
$this->visit('/users')->see('value');
}
Which works nicely for unit tests. The problem I am trying to understand is if these facades are mocked 'globally'.
For example, lets imagine I am writing an integration test (testing a few interconnected classes while mocking services - not an end to end test using live services) which at some point, executes two separate classes which contain the same facade that calls the same method with the same parameters.
In between these classes being called, is some complex functionality that changes what data is returned by that facades method using the same parameter.*
$modernClass->cacheFunctionOne($cache); // easily mocked
// logic that changes data returned by laravel Cache object function 'someFunction'
$modernClass->cacheFunctionTwo($cache); // easily mocked with a different mock
Our modern classes are easy to test because the underlying class that the facade represents is injected into each class (in this example, each method). This means I can create two separate mocks and inject them into each class (method) to mock the different results.
$legacyClass->cacheFunctionOne();
// logic that changes data returned by laravel Cache object function 'someFunction'
$legacyClass->cacheFunctionTwo();
In the legacy systems though, it would seem that the mocked facade is 'global' so that when the facade is run in each class, the exact same value is returned.
Am I correct in thinking this?
*I understand this example may seem completely redundant from a code architecture and testing point of view, but I am stripping out all real functionality to try and give some sort of 'simple' example of what I am asking.
Dependency Injection vs Facades
One of the major benefits of Dependency Injection is that code becomes a lot more testable once you start injecting dependencies into methods instead of instantiating/hardcoding them inside the method. This is because you can pass in the dependencies from inside unit tests and they will propagate through the code.
See: http://slashnode.com/dependency-injection/
Dependency Injection stands in stark contrast to Facades. Facades are static global classes, the PHP language does not allow one to overwrite or replace static functions on static classes. The Laravel facades use Mockery to provide mock functionality and they are limited by the same facts as above.
The issue for integration testing can come where you are hoping to retrieve data from a non-mocked Cache but once you use Facade::shouldReceive() then Facade::get() will be overridden by the mocked Cache. The reverse is also true. As a result, Facades are inappropriate where you are interleaving calls for mocked and unmocked data.
In order to test your code with the different data sets that you require, the best practice would be to refactor your legacy code to use DI.
Integration Tests
Easier method
An alternative is to call multiple Facade::shouldReceive() with expectations at the beginning of your integration test. Ensuring that you have the right numbers of expectations in the right order for each of the calls you will make in the integration test. This would probably be the faster way to write tests given your existing codebase.
Harder method
Whilst dependency injection is programming best practice. It could very well be that your codebase has so many legacy classes that it would take an unbelievable amount of time to refactor. In this case, it might be worthwhile considering end-to-end integration tests using a test database with fixtures.
Appendix:
For how mockery is called by Facade see - function createMockByName(): https://github.com/laravel/framework/blob/5.3/src/Illuminate/Support/Facades/Facade.php
For examples on chaining mockery calls see fhinkel commented on Feb 6, 2015: https://github.com/padraic/mockery/issues/401

Am I setting myself up for failure using a static method in a Laravel Controller?

I am quite new to OOP, so this is really a basic OOP question, in the context of a Laravel Controller.
I'm attempting to create a notification system system that creates Notification objects when certain other objects are created, edited, deleted, etc. So, for example, if a User is edited, then I want to generate a Notification regarding this edit. Following this example, I've created UserObserver that calls NotificationController::store() when a User is saved.
class UserObserver extends BaseObserver
{
public function saved($user)
{
$data = [
// omitted from example
];
NotificationController::store($data);
}
}
In order to make this work, I had to make NotificationController::store() static.
class NotificationController extends \BaseController {
public static function store($data)
{
// validation omitted from example
$notification = Notification::create($data);
}
I'm only vaguely familiar with what static means, so there's more than likely something inherently wrong with what I'm doing here, but this seems to get the job done, more or less. However, everything that I've read indicates that static functions are generally bad practice. Is what I'm doing here "wrong," per say? How could I do this better?
I will have several other Observer classes that will need to call this same NotificationController::store(), and I want NotificationController::store() to handle any validation of $data.
I am just starting to learn about unit testing. Would what I've done here make anything difficult with regard to testing?
I've written about statics extensively here: How Not To Kill Your Testability Using Statics. The gist of it as applies to your case is as follows:
Static function calls couple code. It is not possible to substitute static function calls with anything else or to skip those calls, for whatever reason. NotificationController::store() is essentially in the same class of things as substr(). Now, you probably wouldn't want to substitute a call to substr by anything else; but there are a ton of reasons why you may want to substitute NotificationController, now or later.
Unit testing is just one very obvious use case where substitution is very desirable. If you want to test the UserObserver::saved function just by itself, because it contains a complex algorithm which you need to test with all possible inputs to ensure it's working correctly, you cannot decouple that algorithm from the call to NotificationController::store(). And that function in turn probably calls some Model::save() method, which in turn wants to talk to a database. You'd need to set up this whole environment which all this other unrelated code requires (and which may or may not contain bugs of its own), that it essentially is impossible to simply test this one function by itself.
If your code looked more like this:
class UserObserver extends BaseObserver
{
public function saved($user)
{
$data = [
// omitted from example
];
$this->NotificationController->store($data);
}
}
Well, $this->NotificationController is obviously a variable which can be substituted at some point. Most typically this object would be injected at the time you instantiate the class:
new UserObserver($notificationController)
You could simply inject a mock object which allows any methods to be called, but which simply does nothing. Then you could test UserObserver::saved() in isolation and ensure it's actually bug free.
In general, using dependency injected code makes your application more flexible and allows you to take it apart. This is necessary for unit testing, but will also come in handy later in scenarios you can't even imagine right now, but will be stumped by half a year from now as you need to restructure and refactor your application for some new feature you want to implement.
Caveat: I have never written a single line of Laravel code, but as I understand it, it does support some form of dependency injection. If that's actually really the case, you should definitely use that capability. Otherwise be very aware of what parts of your code you're coupling to what other parts and how this will impact your ability to take it apart and refactor later.

Having issues understanding Dependency Injection

I'm building out a small project to try to teach myself as much of the fundamentals as possible, which for me means not using a prefabricated framework (As Jeff once put it, "Don't reinvent the wheel, unless you plan on learning more about wheels" [emphasis mine]) and following the principles of Test Driven Development.
In my quest, I recently ran into the concept of Dependency Injection, which appears essential to TDD. My problem is that I can't quite wrap my head around it. My understanding so far is that it more or less amounts to "have the caller pass the class/method any other classes it may need, rather than letting them create them themselves."
I have two example issues that I'm trying to resolve with DI. Am I on the right track with these refactorings?
Database Connection
I'm planning to just use a singleton to handle the database, as I'm currently not expecting to use multiple databases. Initially, my models were going to look something like this:
class Post {
private $id;
private $body;
public static function getPostById($id) {
$db = Database::getDB();
$db->query("SELECT...");
//etc.
return new Post($id, $body);
}
public function edit($newBody) {
$db = Database::getDB();
$db->query("UPDATE...");
//etc.
}
}
With DI, I think it would look more like this:
class Post {
private $db; // new member
private $id;
private $body;
public static function getPostById($id, $db) { // new parameter
$db->query("SELECT..."); // uses parameter
//etc.
return new Post($db, $id, $body);
}
public function edit($id, $newBody) {
$this->db->query("UPDATE..."); // uses member
//etc.
}
}
I can still use the singleton, with credentials specified in the application setup, but I just have to pass it from the controller (controllers being un-unit-testable anyway):
Post::getPostById(123, Database::getDB);
Models calling models
Take, for example, a post which has a view count. Since the logic to determine if a view is new isn't specific to the Post object, it was just going to be a static method on its own object. The Post object would then call it:
class Post {
//...
public function addView() {
if (PageView::registerView("post", $this->id) {
$db = Database::getDB();
$db->query("UPDATE..");
$this->viewCount++;
}
}
With DI, I think it looks more like this:
class Post {
private $db;
//...
public function addView($viewRegistry) {
if ($viewRegistry->registerView("post", $this->id, $this->db) {
$this->db->query("UPDATE..");
$this->viewCount++;
}
}
This changes the call from the controller to this:
$post->addView(new PageView());
Which means instantiating a new instance of a class that only has static methods, which smells bad to me (and I think is impossible in some languages, but doable here because PHP doesn't allow classes themselves to be static).
In this case we're only going one level deep, so having the controller instantiate everything seems workable (although the PageView class is getting its DB connection indirectly by way of the Post's member variable), but it seems like it could get unwieldy if you had to call a method that needed a class that needed the class that needed a class. I suppose that could just mean that's a code smell too though.
Am I on the right track with this, or have I completely misunderstood DI? Any criticisms and suggestions are greatly appreciated.
Yes. It looks like you have the right idea. You'll see that as you implement DI all your dependencies will float to the "top". Having everything at the top will make it easy to mock the necessary objects for testing.
Having a class that needs a class that needs a class is not a bad thing. What your describing there is your object graph. This is normal for DI. Lets take a House object as an example. It has a dependency on a Kitchen; the Kitchen has a dependency on a Sink; the Sink has a dependency on a Faucet and so on. The House's instantiation would look something like new House(new Kitchen(new Sink(new Faucet()))). This helps to enforce the Single Responsibility Principle. (As an aside you should do this instantiation work in something like a factory or builder to further enforce the Single Responsibility Principle.)
Misko Hevery has written extensively about DI. His blog is a great resource. He's also pointed out some of the common flaws (constructor does real work, digging into collaborators, brittle global state and singletons, and class does too much) with warning signs to spot them and ways to fix them. It's worth checking out sometime.
Dependency injection is about injecting. You need some solution to inject the external object.
The traditional approaches are:
constructor injection __construnctor($dependecy) {$this->_object = $dependency}
setter injection setObject($dependency) {$this->_object = $dependency}
gettter injection getObject() {return $this->_dependency} and oveloading this method eg. from stub or mock in the tests.
You may also mix all the above, depends what you need.
Avoid static calls. My personal rule is use static only when you call some functions, e.g. My::strpos() or when dealing with singletons or registry (which should be limited to minimum, because global state is evil).
You will rarely need static methods when your app has a good dependency container.
Take a look at the other dependency injection + [php] topics on SO.
Edit after comment:
The container
Different frameworks handle the container in different way. Generally this is an object, which holds the instances of objects you need, so you don't have to instantiate new object each time. You may register any object with such a container, and then access it anytime you need.
The container may instantiate all the resources you need at boot time, or lazy load the resource when accessed (better solution).
As an example, consider:
Zend Application Resource Plugins
Symfony Dependency Injection Container
Another great reference:
http://martinfowler.com/articles/injection.html
It's certainly going into the right direction but you should not stop there.
The point of DI is to remove strong couplings between classes to allow for easier substitution of single components. This will allow for better testability because you can substitute dependencies more easily with Mocks and Stubs. And once your code is tested, it is much easiert to change and maintain.
Consequently, you should also remove those other aspects in your code that create strong coupling smells as well, e.g. remove the static methods and the singleton and any other globals.
For some more information on that, please see
How is testing the registry pattern or singleton hard in PHP?
http://gooh.posterous.com/singletons-in-php
http://kore-nordmann.de/blog/0103_static_considered_harmful.html
http://fabien.potencier.org/article/11/what-is-dependency-injection
EDIT: with a couple of others answers suggesting to use a DI container, I feel it's necessary to stress that you do not need a DI container to do DI. The second blog post in the last link given above discusses this.
To answer your questions: yes, you are on the right track. To give you more details: this is one of the best posts I found related to DI:
http://www.potstuck.com/2009/01/08/php-dependency-injection
You will understand what a container is:
$book = Container::makeBook();
Regarding the second example: in your method addView I would try to avoid passing the object $viewRegistry, I would check the condition outside in the controller.

PHP: Standards of class constructors preventing instantiation

Just a question on standards.
I've created a wrapper class for PHP session management, that helps automatically organize session data based on certain internal modules accessing it. It's designed as a singleton, using a getInstance() method to instantiate, since there will only be a single session at a given time. Also, this came as a benefit to me, as I am able to prevent instantiation of the session object in the (albeit probably limited) chance that session_start() fails. As for an example:
public static function getInstance(){
if(!self::$_instance || !session_id()){
if(session_start()){
self::$_instance = new self(session_id());
}else{
return;
}
}
return self::$_instance;
}
My question is; although the use of a gateway getInstance() method works naturally here for a few reasons, is it common/good practice to implement public static getInstance() or create() methods in classes to control object creation if the object is reliant on external conditions?
I just find myself sticking to a convention of providing getInstance() in the case of singletons, and create() in the case of multiple instance objects.
TL;DR: I keep using getInstance() and create() methods to control all object instantiation. Am I doing it wrong?
EDIT: Refining my question a bit; Aside from using getInstance() for singletons, is my constructor wrapping with create() methods serving less purpose and more leaning towards bad convention? Should I be throwing Exceptions from the true constructor, or continue returning false from a create()?
Singletons are generally considered "bad"; see this section here for a flame war on the topic.
That said, using factory methods or factory classes to create objects is generally considered good, so you're fine there :)
I personally use the symfony dependency injection component (can be installed in any project without using the symfony framework) to simplify dependency injection and avoid singletons where it seems appropriate.
I do still use some singletons, where it makes sense to me; loggers and factory objects, for example, seem to naturally be single to me, so I make them that way. The idea is that global functionality (e.g. a factory) is fine, but global state is bad, I believe.
With regards to your amended question on whether to throw an Exception or whether to return false from your create() call; it depends on whether your application can continue successfully without the created object if not. If, for example, you were creating a database connection that is necessary to create a page, then throw an Exception. If you're doing something less essential, return false and continue on your merry way :)
getInstance() is used ALL over the place in the Zend Framework, which is my goto for standards and conventions in code.
as for the create(), what about using the magic __construct method so that when you do new Blah() it calls the __construct method for that class?
You should user __construct method then using create method.
As __construct is called by itself you can do initialization and other things in constructor .
Another benefit is you can forget to call create() method and your object can be in inconsistent state

Refactoring a method having dependencies within the same object into something more testable (PHP)

I currently have a method within my class that has to call other methods, some in the same object and others from other objects.
class MyClass
{
public function myMethod()
{
$var1 = $this->otherMethod1();
$var2 = $this->otherMethod2();
$var3 = $this->otherMethod3();
$otherObject = new OtherClass();
$var4 = $otherObject->someMethod();
# some processing goes on with these 4 variables
# then the method returns something else
return $var5;
}
}
I'm new to the whole TDD game, but some of what I think I understood to be key premises to more testable code are composition, loose coupling, with some strategy for Dependency Injection/Inversion of Control.
How do I go about refactoring a method into something more testable in this particular situation?
Do I pass the $this object reference to the method as a parameter, so that I can easily mock/stub the collaborating methods? Is this recommended or is it going overboard?
class MyClass
{
public function myMethod($self, $other)
{
# $self == $this
$var1 = $self->otherMethod1();
$var2 = $self->otherMethod2();
$var3 = $self->otherMethod3();
$var4 = $other->someMethod();
# ...
return $var5;
}
}
Also, it is obvious to me that dependencies are a pretty big deal with TDD, as one has to think about how to inject a stub/mock to the said method for tests. Do most TDDers use DI/IoC as a primary strategy for public dependencies? at which point does it become exaggerated? can you give some pointers to do this efficiently?
These are some good questions... let me first say that I do not really know JS at all, but I am a unit tester and have dealt with these issues. I first want to point out that JsUnit exists if you are not using it.
I wouldn't worry too much about your method calling other methods within the same class... this is bound to happen. What worries me more is the creation of the other object, depending on how complicated it is.
For example, if you are instantiating a class that does all kinds of operations over the network, that is too heavy for a simple unit test. What you would prefer to do is mock out the dependency on that class so that you can have the object produce the result you would expect to receive from its operations on the network, without incurring the overhead of going on the network: network failures, time, etc...
Passing in the other object is a bit messy. What people typically do is have a factory method to instantiate the other object. The factory method can decide, based on whether or not you are testing (typically via a flag) whether or not to instantiate the real object or the mock. In fact, you may want to make the other object a member of you class, and within the constructor, call the factory, or make the decision right there whether or not to instantiate the mock or the real thing. Within the setup function or within your test cases you can set special conditions on the mock object so that it will return the proper value.
Also, just make sure you have tests for your other functions in the same class... I hope this helps!
Looks like the whole idea of this class is not quite correct. In TDD your are testing classes, but not methods. If a method has it own responsibility and provides it's own (separate testable) functionality it should be moved to a separate class. Otherwise it just breaks the whole OOP encapsulation thing. Particularly it breaks the Single Responsibility Principle.
In your case, I would extract the tested method into another class and injected $var1, $var2, $var3 and $other as dependencies. The $other should be mocked, as well any object which tested class depends on.
class TestMyClass extends MyTestFrameworkUnitTestBase{
function testMyClass()
{
$myClass = new MyClass();
$myClass->setVar1('asdf');
$myClass->setVar2(23);
$myClass->setVar3(78);
$otherMock = getMockForClassOther();
$myClass->setOther($otherMock);
$this->assertEquals('result', $myClass->myMethod());
}
}
Basic rule I use is: If I want to test something, I should make it a class. This is not always true in PHP though. But it works in PHP in 90% of cases. (Based on my experience)
I might be wrong, but I am under the impression that objects/classes should be black boxes to their clients, and so to their testing clients (encapsulating I think is the term I am looking for).
There's a few things you can do:
The best thing to do is mock, here's one such library: http://code.google.com/p/php-mock-function
It should let you mock out only the specific functions you want.
If that doesn't work, the next best thing is to provide the implementation of method2 as a method of an object within the MyClass class. I find this one of the easier methods if you can't mock methods directly:
class MyClass {
function __construct($method2Impl) {
$this->method2Impl = $method2Impl;
}
function method2() {
return $this->method2Imple->call();
}
}
Another option is to add an "under test" flag, so that the method behaves different. I don't recommend this either - eventually you'll have differing code paths and with their own bugs.
Another option would be to subclass and override the behaviors you need. I -really- don't suggest this since you'll end up customizing your overridden mock to the point that it'll have bugs itself :).
Finally, if you need to mock out a method because its too complicated, that can be a good sign to move it into its own object and use composition (essentially using the method2Impl technique i mentioned above).
Possibly, this is more a matter of single responsibility principle being violated, which is feeding into TDD issues.
That's a GOOD thing, that means TDD is exposing design flaws. Or so the story goes.
If those methods are not public, and are just you breaking apart you code into more digestable chunks, honestly, I wouldn't care.
If those methods are public, then you've got an issue. Following the rule, 'any public method of a class instance must be callable at any point'. That is to say, if you're requiring some sort of ordering of method calls, then it's time to break that class up.

Categories