php function calling itself - php

Why is the answer, 13 as given. I just cannot get my head around it.
What does the following function return, if the given input is 7:
function foo($bar) {
if ($bar == 1) return 1;
elseif ($bar == 0) return 0;
else return foo($bar - 1) + foo($bar - 2);
}
Correct Answer: D. 13

nneonneo should have just posted his comment as the answer, but, this is is how the concept of recursion works:
foo(7)
= foo(6) + foo(5)
But wait, what're those equal to?
foo(6) = foo(5) + foo(4)
Sonofagun!
foo(5) = foo(4) + foo(3)
Hmm .. a pattern emerging ..
foo(4) = foo(3) + foo(2)
foo(3) = foo(2) + foo(1)
foo(2) = foo(1) + foo(0)
foo(1) = 1
and
foo(0) = 0.
So now you can figure out backwards back to the values, but (and this the more important question) what's really happening when you increase $bar by 1 again?
How does foo(8) compare to foo(7)?
And the answer is that foo (8) equals foo(7) + foo(6). In other words, it is equal to 13 + 8 - the sum of the two previous outputs of foo .. hey, that sounds familiar ... is there some famous sequence that is equal to the sum of the previous two numbers?
1, 2, 3, 5, 8, 13 ...
That's right, this is how you can calculate the Fibonacci sequence recursively. And if you think about how you build up the Fibonacci sequence, it's really
1, 1 + 1, 2 + 1, 3 + 2, 5 + 3, 8 +5
Which is just
1, 1 + 1, (1 + 1) + 1, (2 + 1) + (1 + 1), etc.
By "seeding" the initial values (position "0" is 0, position 1 is 1) and then adding them together, you are able to derive each number in the sequence using just the original seeds and a lot of addition.
So in this case, bar represents the bar position in the Fibonacci sequence. So the 7th number in the sequence is 13.

It is very simple, just trace the sequence by hand. When using this type of recursion it helps to think of it more as a mathematical function than a programming procedure. If you want to get to know it more naturally, playing with a functional language *ML or some LISP would help you a lot and very quickly.
When you have a recursion on a data structure (Stack/Queue), then it is a bit different, but functional programming experience helps for that too.
foo(0) = 0
foo(1) = 1
foo(2) = foo(1) + foo(0) = 1 + 0 = 1
foo(3) = foo(2) + foo(1) = 1 + 1 = 2
foo(4) = 2 + 1 = 3
foo(5) = 3 + 2 = 5
foo(6) = 5 + 3 = 8
foo(7) = 8 + 5 = 13

Related

PHP - keeping the 0 non-significant in the sum

In the database I have a field with values such as C50003.
I have a function that divides this value into: C5 and 0003.
Now I need to add 1 to 0003, which would become 0004.
The problem is that when I do the sum (0003 + 1) the result is 4 and not 0004. (I have already tried doing 0003 + 0001, but nothing changes).
To fix this error I would have to count the number of initial 0's and put them back to the final result, but that would be a laborious check.
Is there any way to keep those 0's?
As easy way:
$value = '0003';
$intValue = (int) $value;
$newValue = $intValue + 1;
$formattedValue = str_pad($newValue, strlen($value), '0', STR_PAD_LEFT);
echo $formattedValue; // 0004
$value = '0012'; // => 0013
UPD: Change strlen($value) - strlen($intValue) + 1 to strlen($value) on the advice of #user1597430.

Print out all combination of a set of numbers in PHP [duplicate]

How would you go about testing all possible combinations of additions from a given set N of numbers so they add up to a given final number?
A brief example:
Set of numbers to add: N = {1,5,22,15,0,...}
Desired result: 12345
This problem can be solved with a recursive combinations of all possible sums filtering out those that reach the target. Here is the algorithm in Python:
def subset_sum(numbers, target, partial=[]):
s = sum(partial)
# check if the partial sum is equals to target
if s == target:
print "sum(%s)=%s" % (partial, target)
if s >= target:
return # if we reach the number why bother to continue
for i in range(len(numbers)):
n = numbers[i]
remaining = numbers[i+1:]
subset_sum(remaining, target, partial + [n])
if __name__ == "__main__":
subset_sum([3,9,8,4,5,7,10],15)
#Outputs:
#sum([3, 8, 4])=15
#sum([3, 5, 7])=15
#sum([8, 7])=15
#sum([5, 10])=15
This type of algorithms are very well explained in the following Stanford's Abstract Programming lecture - this video is very recommendable to understand how recursion works to generate permutations of solutions.
Edit
The above as a generator function, making it a bit more useful. Requires Python 3.3+ because of yield from.
def subset_sum(numbers, target, partial=[], partial_sum=0):
if partial_sum == target:
yield partial
if partial_sum >= target:
return
for i, n in enumerate(numbers):
remaining = numbers[i + 1:]
yield from subset_sum(remaining, target, partial + [n], partial_sum + n)
Here is the Java version of the same algorithm:
package tmp;
import java.util.ArrayList;
import java.util.Arrays;
class SumSet {
static void sum_up_recursive(ArrayList<Integer> numbers, int target, ArrayList<Integer> partial) {
int s = 0;
for (int x: partial) s += x;
if (s == target)
System.out.println("sum("+Arrays.toString(partial.toArray())+")="+target);
if (s >= target)
return;
for(int i=0;i<numbers.size();i++) {
ArrayList<Integer> remaining = new ArrayList<Integer>();
int n = numbers.get(i);
for (int j=i+1; j<numbers.size();j++) remaining.add(numbers.get(j));
ArrayList<Integer> partial_rec = new ArrayList<Integer>(partial);
partial_rec.add(n);
sum_up_recursive(remaining,target,partial_rec);
}
}
static void sum_up(ArrayList<Integer> numbers, int target) {
sum_up_recursive(numbers,target,new ArrayList<Integer>());
}
public static void main(String args[]) {
Integer[] numbers = {3,9,8,4,5,7,10};
int target = 15;
sum_up(new ArrayList<Integer>(Arrays.asList(numbers)),target);
}
}
It is exactly the same heuristic. My Java is a bit rusty but I think is easy to understand.
C# conversion of Java solution: (by #JeremyThompson)
public static void Main(string[] args)
{
List<int> numbers = new List<int>() { 3, 9, 8, 4, 5, 7, 10 };
int target = 15;
sum_up(numbers, target);
}
private static void sum_up(List<int> numbers, int target)
{
sum_up_recursive(numbers, target, new List<int>());
}
private static void sum_up_recursive(List<int> numbers, int target, List<int> partial)
{
int s = 0;
foreach (int x in partial) s += x;
if (s == target)
Console.WriteLine("sum(" + string.Join(",", partial.ToArray()) + ")=" + target);
if (s >= target)
return;
for (int i = 0; i < numbers.Count; i++)
{
List<int> remaining = new List<int>();
int n = numbers[i];
for (int j = i + 1; j < numbers.Count; j++) remaining.Add(numbers[j]);
List<int> partial_rec = new List<int>(partial);
partial_rec.Add(n);
sum_up_recursive(remaining, target, partial_rec);
}
}
Ruby solution: (by #emaillenin)
def subset_sum(numbers, target, partial=[])
s = partial.inject 0, :+
# check if the partial sum is equals to target
puts "sum(#{partial})=#{target}" if s == target
return if s >= target # if we reach the number why bother to continue
(0..(numbers.length - 1)).each do |i|
n = numbers[i]
remaining = numbers.drop(i+1)
subset_sum(remaining, target, partial + [n])
end
end
subset_sum([3,9,8,4,5,7,10],15)
Edit: complexity discussion
As others mention this is an NP-hard problem. It can be solved in exponential time O(2^n), for instance for n=10 there will be 1024 possible solutions. If the targets you are trying to reach are in a low range then this algorithm works. So for instance:
subset_sum([1,2,3,4,5,6,7,8,9,10],100000) generates 1024 branches because the target never gets to filter out possible solutions.
On the other hand subset_sum([1,2,3,4,5,6,7,8,9,10],10) generates only 175 branches, because the target to reach 10 gets to filter out many combinations.
If N and Target are big numbers one should move into an approximate version of the solution.
The solution of this problem has been given a million times on the Internet. The problem is called The coin changing problem. One can find solutions at http://rosettacode.org/wiki/Count_the_coins and mathematical model of it at http://jaqm.ro/issues/volume-5,issue-2/pdfs/patterson_harmel.pdf (or Google coin change problem).
By the way, the Scala solution by Tsagadai, is interesting. This example produces either 1 or 0. As a side effect, it lists on the console all possible solutions. It displays the solution, but fails making it usable in any way.
To be as useful as possible, the code should return a List[List[Int]]in order to allow getting the number of solution (length of the list of lists), the "best" solution (the shortest list), or all the possible solutions.
Here is an example. It is very inefficient, but it is easy to understand.
object Sum extends App {
def sumCombinations(total: Int, numbers: List[Int]): List[List[Int]] = {
def add(x: (Int, List[List[Int]]), y: (Int, List[List[Int]])): (Int, List[List[Int]]) = {
(x._1 + y._1, x._2 ::: y._2)
}
def sumCombinations(resultAcc: List[List[Int]], sumAcc: List[Int], total: Int, numbers: List[Int]): (Int, List[List[Int]]) = {
if (numbers.isEmpty || total < 0) {
(0, resultAcc)
} else if (total == 0) {
(1, sumAcc :: resultAcc)
} else {
add(sumCombinations(resultAcc, sumAcc, total, numbers.tail), sumCombinations(resultAcc, numbers.head :: sumAcc, total - numbers.head, numbers))
}
}
sumCombinations(Nil, Nil, total, numbers.sortWith(_ > _))._2
}
println(sumCombinations(15, List(1, 2, 5, 10)) mkString "\n")
}
When run, it displays:
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2)
List(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2)
List(1, 1, 1, 1, 1, 2, 2, 2, 2, 2)
List(1, 1, 1, 2, 2, 2, 2, 2, 2)
List(1, 2, 2, 2, 2, 2, 2, 2)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5)
List(1, 1, 1, 1, 1, 1, 1, 1, 2, 5)
List(1, 1, 1, 1, 1, 1, 2, 2, 5)
List(1, 1, 1, 1, 2, 2, 2, 5)
List(1, 1, 2, 2, 2, 2, 5)
List(2, 2, 2, 2, 2, 5)
List(1, 1, 1, 1, 1, 5, 5)
List(1, 1, 1, 2, 5, 5)
List(1, 2, 2, 5, 5)
List(5, 5, 5)
List(1, 1, 1, 1, 1, 10)
List(1, 1, 1, 2, 10)
List(1, 2, 2, 10)
List(5, 10)
The sumCombinations() function may be used by itself, and the result may be further analyzed to display the "best" solution (the shortest list), or the number of solutions (the number of lists).
Note that even like this, the requirements may not be fully satisfied. It might happen that the order of each list in the solution be significant. In such a case, each list would have to be duplicated as many time as there are combination of its elements. Or we might be interested only in the combinations that are different.
For example, we might consider that List(5, 10) should give two combinations: List(5, 10) and List(10, 5). For List(5, 5, 5) it could give three combinations or one only, depending on the requirements. For integers, the three permutations are equivalent, but if we are dealing with coins, like in the "coin changing problem", they are not.
Also not stated in the requirements is the question of whether each number (or coin) may be used only once or many times. We could (and we should!) generalize the problem to a list of lists of occurrences of each number. This translates in real life into "what are the possible ways to make an certain amount of money with a set of coins (and not a set of coin values)". The original problem is just a particular case of this one, where we have as many occurrences of each coin as needed to make the total amount with each single coin value.
A Javascript version:
function subsetSum(numbers, target, partial) {
var s, n, remaining;
partial = partial || [];
// sum partial
s = partial.reduce(function (a, b) {
return a + b;
}, 0);
// check if the partial sum is equals to target
if (s === target) {
console.log("%s=%s", partial.join("+"), target)
}
if (s >= target) {
return; // if we reach the number why bother to continue
}
for (var i = 0; i < numbers.length; i++) {
n = numbers[i];
remaining = numbers.slice(i + 1);
subsetSum(remaining, target, partial.concat([n]));
}
}
subsetSum([3,9,8,4,5,7,10],15);
// output:
// 3+8+4=15
// 3+5+7=15
// 8+7=15
// 5+10=15
In Haskell:
filter ((==) 12345 . sum) $ subsequences [1,5,22,15,0,..]
And J:
(]#~12345=+/#>)(]<##~[:#:#i.2^#)1 5 22 15 0 ...
As you may notice, both take the same approach and divide the problem into two parts: generate each member of the power set, and check each member's sum to the target.
There are other solutions but this is the most straightforward.
Do you need help with either one, or finding a different approach?
There are a lot of solutions so far, but all are of the form generate then filter. Which means that they potentially spend a lot of time working on recursive paths that do not lead to a solution.
Here is a solution that is O(size_of_array * (number_of_sums + number_of_solutions)). In other words it uses dynamic programming to avoid enumerating possible solutions that will never match.
For giggles and grins I made this work with numbers that are both positive and negative, and made it an iterator. It will work for Python 2.3+.
def subset_sum_iter(array, target):
sign = 1
array = sorted(array)
if target < 0:
array = reversed(array)
sign = -1
# Checkpoint A
last_index = {0: [-1]}
for i in range(len(array)):
for s in list(last_index.keys()):
new_s = s + array[i]
if 0 < (new_s - target) * sign:
pass # Cannot lead to target
elif new_s in last_index:
last_index[new_s].append(i)
else:
last_index[new_s] = [i]
# Checkpoint B
# Now yield up the answers.
def recur(new_target, max_i):
for i in last_index[new_target]:
if i == -1:
yield [] # Empty sum.
elif max_i <= i:
break # Not our solution.
else:
for answer in recur(new_target - array[i], i):
answer.append(array[i])
yield answer
for answer in recur(target, len(array)):
yield answer
And here is an example of it being used with an array and target where the filtering approach used in other solutions would effectively never finish.
def is_prime(n):
for i in range(2, n):
if 0 == n % i:
return False
elif n < i * i:
return True
if n == 2:
return True
else:
return False
def primes(limit):
n = 2
while True:
if is_prime(n):
yield(n)
n = n + 1
if limit < n:
break
for answer in subset_sum_iter(primes(1000), 76000):
print(answer)
This prints all 522 answers in under 2 seconds. The previous approaches would be lucky to find any answers in the current lifetime of the universe. (The full space has 2^168 = 3.74144419156711e+50 possible combinations to run through. That...takes a while.)
Explanation
I was asked to explain the code, but explaining data structures is usually more revealing. So I'll explain the data structures.
Let's consider subset_sum_iter([-2, 2, -3, 3, -5, 5, -7, 7, -11, 11], 10).
At checkpoint A, we have realized that our target is positive so sign = 1. And we've sorted our input so that array = [-11, -7, -5, -3, -2, 2, 3, 5, 7, 11]. Since we wind up accessing it by index a lot, here the the map from indexes to values:
0: -11
1: -7
2: -5
3: -3
4: -2
5: 2
6: 3
7: 5
8: 7
9: 11
By checkpoint B we have used Dynamic Programming to generate our last_index data structure. What does it contain?
last_index = {
-28: [4],
-26: [3, 5],
-25: [4, 6],
-24: [5],
-23: [2, 4, 5, 6, 7],
-22: [6],
-21: [3, 4, 5, 6, 7, 8],
-20: [4, 6, 7],
-19: [3, 5, 7, 8],
-18: [1, 4, 5, 6, 7, 8],
-17: [4, 5, 6, 7, 8, 9],
-16: [2, 4, 5, 6, 7, 8],
-15: [3, 5, 6, 7, 8, 9],
-14: [3, 4, 5, 6, 7, 8, 9],
-13: [4, 5, 6, 7, 8, 9],
-12: [2, 4, 5, 6, 7, 8, 9],
-11: [0, 5, 6, 7, 8, 9],
-10: [3, 4, 5, 6, 7, 8, 9],
-9: [4, 5, 6, 7, 8, 9],
-8: [3, 5, 6, 7, 8, 9],
-7: [1, 4, 5, 6, 7, 8, 9],
-6: [5, 6, 7, 8, 9],
-5: [2, 4, 5, 6, 7, 8, 9],
-4: [6, 7, 8, 9],
-3: [3, 5, 6, 7, 8, 9],
-2: [4, 6, 7, 8, 9],
-1: [5, 7, 8, 9],
0: [-1, 5, 6, 7, 8, 9],
1: [6, 7, 8, 9],
2: [5, 6, 7, 8, 9],
3: [6, 7, 8, 9],
4: [7, 8, 9],
5: [6, 7, 8, 9],
6: [7, 8, 9],
7: [7, 8, 9],
8: [7, 8, 9],
9: [8, 9],
10: [7, 8, 9]
}
(Side note, it is not symmetric because the condition if 0 < (new_s - target) * sign stops us from recording anything past target, which in our case was 10.)
What does this mean? Well, take the entry, 10: [7, 8, 9]. It means that we can wind up at a final sum of 10 with the last number chosen being at indexes 7, 8, or 9. Namely the last number chosen could be 5, 7, or 11.
Let's take a closer look at what happens if we choose index 7. That means we end on a 5. So therefore before we came to index 7, we had to get to 10-5 = 5. And the entry for 5 reads, 5: [6, 7, 8, 9]. So we could have picked index 6, which is 3. While we get to 5 at indexes 7, 8, and 9, we didn't get there before index 7. So our second to last choice has to be the 3 at index 6.
And now we have to get to 5-3 = 2 before index 6. The entry 2 reads: 2: [5, 6, 7, 8, 9]. Again, we only care about the answer at index 5 because the others happened too late. So the third to last choice is has to be the 2 at index 5.
And finally we have to get to 2-2 = 0 before index 5. The entry 0 reads: 0: [-1, 5, 6, 7, 8, 9]. Again we only care about the -1. But -1 isn't an index - in fact I'm using it to signal we're done choosing.
So we just found the solution 2+3+5 = 10. Which is the very first solution we print out.
And now we get to the recur subfunction. Because it is defined inside of our main function, it can see last_index.
The first thing to note is that it calls yield, not return. This makes it into a generator. When you call it you return a special kind of iterator. When you loop over that iterator, you'll get a list of all of the things it can yield. But you get them as it generates them. If it is a long list, you don't put it in memory. (Kind of important because we could get a long list.)
What recur(new_target, max_i) will yield are all of the ways that you could have summed up to new_target using only elements of array with maximum index max_i. That is it answers: "We have to get to new_target before index max_i+1." It is, of course, recursive.
Therefore recur(target, len(array)) is all solutions that reach target using any index at all. Which is what we want.
C++ version of the same algorithm
#include <iostream>
#include <list>
void subset_sum_recursive(std::list<int> numbers, int target, std::list<int> partial)
{
int s = 0;
for (std::list<int>::const_iterator cit = partial.begin(); cit != partial.end(); cit++)
{
s += *cit;
}
if(s == target)
{
std::cout << "sum([";
for (std::list<int>::const_iterator cit = partial.begin(); cit != partial.end(); cit++)
{
std::cout << *cit << ",";
}
std::cout << "])=" << target << std::endl;
}
if(s >= target)
return;
int n;
for (std::list<int>::const_iterator ai = numbers.begin(); ai != numbers.end(); ai++)
{
n = *ai;
std::list<int> remaining;
for(std::list<int>::const_iterator aj = ai; aj != numbers.end(); aj++)
{
if(aj == ai)continue;
remaining.push_back(*aj);
}
std::list<int> partial_rec=partial;
partial_rec.push_back(n);
subset_sum_recursive(remaining,target,partial_rec);
}
}
void subset_sum(std::list<int> numbers,int target)
{
subset_sum_recursive(numbers,target,std::list<int>());
}
int main()
{
std::list<int> a;
a.push_back (3); a.push_back (9); a.push_back (8);
a.push_back (4);
a.push_back (5);
a.push_back (7);
a.push_back (10);
int n = 15;
//std::cin >> n;
subset_sum(a, n);
return 0;
}
C# version of #msalvadores code answer
void Main()
{
int[] numbers = {3,9,8,4,5,7,10};
int target = 15;
sum_up(new List<int>(numbers.ToList()),target);
}
static void sum_up_recursive(List<int> numbers, int target, List<int> part)
{
int s = 0;
foreach (int x in part)
{
s += x;
}
if (s == target)
{
Console.WriteLine("sum(" + string.Join(",", part.Select(n => n.ToString()).ToArray()) + ")=" + target);
}
if (s >= target)
{
return;
}
for (int i = 0;i < numbers.Count;i++)
{
var remaining = new List<int>();
int n = numbers[i];
for (int j = i + 1; j < numbers.Count;j++)
{
remaining.Add(numbers[j]);
}
var part_rec = new List<int>(part);
part_rec.Add(n);
sum_up_recursive(remaining,target,part_rec);
}
}
static void sum_up(List<int> numbers, int target)
{
sum_up_recursive(numbers,target,new List<int>());
}
Java non-recursive version that simply keeps adding elements and redistributing them amongst possible values. 0's are ignored and works for fixed lists (what you're given is what you can play with) or a list of repeatable numbers.
import java.util.*;
public class TestCombinations {
public static void main(String[] args) {
ArrayList<Integer> numbers = new ArrayList<>(Arrays.asList(0, 1, 2, 2, 5, 10, 20));
LinkedHashSet<Integer> targets = new LinkedHashSet<Integer>() {{
add(4);
add(10);
add(25);
}};
System.out.println("## each element can appear as many times as needed");
for (Integer target: targets) {
Combinations combinations = new Combinations(numbers, target, true);
combinations.calculateCombinations();
for (String solution: combinations.getCombinations()) {
System.out.println(solution);
}
}
System.out.println("## each element can appear only once");
for (Integer target: targets) {
Combinations combinations = new Combinations(numbers, target, false);
combinations.calculateCombinations();
for (String solution: combinations.getCombinations()) {
System.out.println(solution);
}
}
}
public static class Combinations {
private boolean allowRepetitions;
private int[] repetitions;
private ArrayList<Integer> numbers;
private Integer target;
private Integer sum;
private boolean hasNext;
private Set<String> combinations;
/**
* Constructor.
*
* #param numbers Numbers that can be used to calculate the sum.
* #param target Target value for sum.
*/
public Combinations(ArrayList<Integer> numbers, Integer target) {
this(numbers, target, true);
}
/**
* Constructor.
*
* #param numbers Numbers that can be used to calculate the sum.
* #param target Target value for sum.
*/
public Combinations(ArrayList<Integer> numbers, Integer target, boolean allowRepetitions) {
this.allowRepetitions = allowRepetitions;
if (this.allowRepetitions) {
Set<Integer> numbersSet = new HashSet<>(numbers);
this.numbers = new ArrayList<>(numbersSet);
} else {
this.numbers = numbers;
}
this.numbers.removeAll(Arrays.asList(0));
Collections.sort(this.numbers);
this.target = target;
this.repetitions = new int[this.numbers.size()];
this.combinations = new LinkedHashSet<>();
this.sum = 0;
if (this.repetitions.length > 0)
this.hasNext = true;
else
this.hasNext = false;
}
/**
* Calculate and return the sum of the current combination.
*
* #return The sum.
*/
private Integer calculateSum() {
this.sum = 0;
for (int i = 0; i < repetitions.length; ++i) {
this.sum += repetitions[i] * numbers.get(i);
}
return this.sum;
}
/**
* Redistribute picks when only one of each number is allowed in the sum.
*/
private void redistribute() {
for (int i = 1; i < this.repetitions.length; ++i) {
if (this.repetitions[i - 1] > 1) {
this.repetitions[i - 1] = 0;
this.repetitions[i] += 1;
}
}
if (this.repetitions[this.repetitions.length - 1] > 1)
this.repetitions[this.repetitions.length - 1] = 0;
}
/**
* Get the sum of the next combination. When 0 is returned, there's no other combinations to check.
*
* #return The sum.
*/
private Integer next() {
if (this.hasNext && this.repetitions.length > 0) {
this.repetitions[0] += 1;
if (!this.allowRepetitions)
this.redistribute();
this.calculateSum();
for (int i = 0; i < this.repetitions.length && this.sum != 0; ++i) {
if (this.sum > this.target) {
this.repetitions[i] = 0;
if (i + 1 < this.repetitions.length) {
this.repetitions[i + 1] += 1;
if (!this.allowRepetitions)
this.redistribute();
}
this.calculateSum();
}
}
if (this.sum.compareTo(0) == 0)
this.hasNext = false;
}
return this.sum;
}
/**
* Calculate all combinations whose sum equals target.
*/
public void calculateCombinations() {
while (this.hasNext) {
if (this.next().compareTo(target) == 0)
this.combinations.add(this.toString());
}
}
/**
* Return all combinations whose sum equals target.
*
* #return Combinations as a set of strings.
*/
public Set<String> getCombinations() {
return this.combinations;
}
#Override
public String toString() {
StringBuilder stringBuilder = new StringBuilder("" + sum + ": ");
for (int i = 0; i < repetitions.length; ++i) {
for (int j = 0; j < repetitions[i]; ++j) {
stringBuilder.append(numbers.get(i) + " ");
}
}
return stringBuilder.toString();
}
}
}
Sample input:
numbers: 0, 1, 2, 2, 5, 10, 20
targets: 4, 10, 25
Sample output:
## each element can appear as many times as needed
4: 1 1 1 1
4: 1 1 2
4: 2 2
10: 1 1 1 1 1 1 1 1 1 1
10: 1 1 1 1 1 1 1 1 2
10: 1 1 1 1 1 1 2 2
10: 1 1 1 1 2 2 2
10: 1 1 2 2 2 2
10: 2 2 2 2 2
10: 1 1 1 1 1 5
10: 1 1 1 2 5
10: 1 2 2 5
10: 5 5
10: 10
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
25: 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
25: 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
25: 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
25: 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
25: 1 1 1 2 2 2 2 2 2 2 2 2 2 2
25: 1 2 2 2 2 2 2 2 2 2 2 2 2
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 5
25: 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 5
25: 1 1 1 1 1 1 1 1 2 2 2 2 2 2 5
25: 1 1 1 1 1 1 2 2 2 2 2 2 2 5
25: 1 1 1 1 2 2 2 2 2 2 2 2 5
25: 1 1 2 2 2 2 2 2 2 2 2 5
25: 2 2 2 2 2 2 2 2 2 2 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 2 5 5
25: 1 1 1 1 1 1 1 1 1 1 1 2 2 5 5
25: 1 1 1 1 1 1 1 1 1 2 2 2 5 5
25: 1 1 1 1 1 1 1 2 2 2 2 5 5
25: 1 1 1 1 1 2 2 2 2 2 5 5
25: 1 1 1 2 2 2 2 2 2 5 5
25: 1 2 2 2 2 2 2 2 5 5
25: 1 1 1 1 1 1 1 1 1 1 5 5 5
25: 1 1 1 1 1 1 1 1 2 5 5 5
25: 1 1 1 1 1 1 2 2 5 5 5
25: 1 1 1 1 2 2 2 5 5 5
25: 1 1 2 2 2 2 5 5 5
25: 2 2 2 2 2 5 5 5
25: 1 1 1 1 1 5 5 5 5
25: 1 1 1 2 5 5 5 5
25: 1 2 2 5 5 5 5
25: 5 5 5 5 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 2 10
25: 1 1 1 1 1 1 1 1 1 1 1 2 2 10
25: 1 1 1 1 1 1 1 1 1 2 2 2 10
25: 1 1 1 1 1 1 1 2 2 2 2 10
25: 1 1 1 1 1 2 2 2 2 2 10
25: 1 1 1 2 2 2 2 2 2 10
25: 1 2 2 2 2 2 2 2 10
25: 1 1 1 1 1 1 1 1 1 1 5 10
25: 1 1 1 1 1 1 1 1 2 5 10
25: 1 1 1 1 1 1 2 2 5 10
25: 1 1 1 1 2 2 2 5 10
25: 1 1 2 2 2 2 5 10
25: 2 2 2 2 2 5 10
25: 1 1 1 1 1 5 5 10
25: 1 1 1 2 5 5 10
25: 1 2 2 5 5 10
25: 5 5 5 10
25: 1 1 1 1 1 10 10
25: 1 1 1 2 10 10
25: 1 2 2 10 10
25: 5 10 10
25: 1 1 1 1 1 20
25: 1 1 1 2 20
25: 1 2 2 20
25: 5 20
## each element can appear only once
4: 2 2
10: 1 2 2 5
10: 10
25: 1 2 2 20
25: 5 20
Thank you.. ephemient
i have converted above logic from python to php..
<?php
$data = array(array(2,3,5,10,15),array(4,6,23,15,12),array(23,34,12,1,5));
$maxsum = 25;
print_r(bestsum($data,$maxsum)); //function call
function bestsum($data,$maxsum)
{
$res = array_fill(0, $maxsum + 1, '0');
$res[0] = array(); //base case
foreach($data as $group)
{
$new_res = $res; //copy res
foreach($group as $ele)
{
for($i=0;$i<($maxsum-$ele+1);$i++)
{
if($res[$i] != 0)
{
$ele_index = $i+$ele;
$new_res[$ele_index] = $res[$i];
$new_res[$ele_index][] = $ele;
}
}
}
$res = $new_res;
}
for($i=$maxsum;$i>0;$i--)
{
if($res[$i]!=0)
{
return $res[$i];
break;
}
}
return array();
}
?>
Another python solution would be to use the itertools.combinations module as follows:
#!/usr/local/bin/python
from itertools import combinations
def find_sum_in_list(numbers, target):
results = []
for x in range(len(numbers)):
results.extend(
[
combo for combo in combinations(numbers ,x)
if sum(combo) == target
]
)
print results
if __name__ == "__main__":
find_sum_in_list([3,9,8,4,5,7,10], 15)
Output: [(8, 7), (5, 10), (3, 8, 4), (3, 5, 7)]
I thought I'd use an answer from this question but I couldn't, so here is my answer. It is using a modified version of an answer in Structure and Interpretation of Computer Programs. I think this is a better recursive solution and should please the purists more.
My answer is in Scala (and apologies if my Scala sucks, I've just started learning it). The findSumCombinations craziness is to sort and unique the original list for the recursion to prevent dupes.
def findSumCombinations(target: Int, numbers: List[Int]): Int = {
cc(target, numbers.distinct.sortWith(_ < _), List())
}
def cc(target: Int, numbers: List[Int], solution: List[Int]): Int = {
if (target == 0) {println(solution); 1 }
else if (target < 0 || numbers.length == 0) 0
else
cc(target, numbers.tail, solution)
+ cc(target - numbers.head, numbers, numbers.head :: solution)
}
To use it:
> findSumCombinations(12345, List(1,5,22,15,0,..))
* Prints a whole heap of lists that will sum to the target *
Excel VBA version below. I needed to implement this in VBA (not my preference, don't judge me!), and used the answers on this page for the approach. I'm uploading in case others also need a VBA version.
Option Explicit
Public Sub SumTarget()
Dim numbers(0 To 6) As Long
Dim target As Long
target = 15
numbers(0) = 3: numbers(1) = 9: numbers(2) = 8: numbers(3) = 4: numbers(4) = 5
numbers(5) = 7: numbers(6) = 10
Call SumUpTarget(numbers, target)
End Sub
Public Sub SumUpTarget(numbers() As Long, target As Long)
Dim part() As Long
Call SumUpRecursive(numbers, target, part)
End Sub
Private Sub SumUpRecursive(numbers() As Long, target As Long, part() As Long)
Dim s As Long, i As Long, j As Long, num As Long
Dim remaining() As Long, partRec() As Long
s = SumArray(part)
If s = target Then Debug.Print "SUM ( " & ArrayToString(part) & " ) = " & target
If s >= target Then Exit Sub
If (Not Not numbers) <> 0 Then
For i = 0 To UBound(numbers)
Erase remaining()
num = numbers(i)
For j = i + 1 To UBound(numbers)
AddToArray remaining, numbers(j)
Next j
Erase partRec()
CopyArray partRec, part
AddToArray partRec, num
SumUpRecursive remaining, target, partRec
Next i
End If
End Sub
Private Function ArrayToString(x() As Long) As String
Dim n As Long, result As String
result = "{" & x(n)
For n = LBound(x) + 1 To UBound(x)
result = result & "," & x(n)
Next n
result = result & "}"
ArrayToString = result
End Function
Private Function SumArray(x() As Long) As Long
Dim n As Long
SumArray = 0
If (Not Not x) <> 0 Then
For n = LBound(x) To UBound(x)
SumArray = SumArray + x(n)
Next n
End If
End Function
Private Sub AddToArray(arr() As Long, x As Long)
If (Not Not arr) <> 0 Then
ReDim Preserve arr(0 To UBound(arr) + 1)
Else
ReDim Preserve arr(0 To 0)
End If
arr(UBound(arr)) = x
End Sub
Private Sub CopyArray(destination() As Long, source() As Long)
Dim n As Long
If (Not Not source) <> 0 Then
For n = 0 To UBound(source)
AddToArray destination, source(n)
Next n
End If
End Sub
Output (written to the Immediate window) should be:
SUM ( {3,8,4} ) = 15
SUM ( {3,5,7} ) = 15
SUM ( {8,7} ) = 15
SUM ( {5,10} ) = 15
Here's a solution in R
subset_sum = function(numbers,target,partial=0){
if(any(is.na(partial))) return()
s = sum(partial)
if(s == target) print(sprintf("sum(%s)=%s",paste(partial[-1],collapse="+"),target))
if(s > target) return()
for( i in seq_along(numbers)){
n = numbers[i]
remaining = numbers[(i+1):length(numbers)]
subset_sum(remaining,target,c(partial,n))
}
}
Perl version (of the leading answer):
use strict;
sub subset_sum {
my ($numbers, $target, $result, $sum) = #_;
print 'sum('.join(',', #$result).") = $target\n" if $sum == $target;
return if $sum >= $target;
subset_sum([#$numbers[$_ + 1 .. $#$numbers]], $target,
[#{$result||[]}, $numbers->[$_]], $sum + $numbers->[$_])
for (0 .. $#$numbers);
}
subset_sum([3,9,8,4,5,7,10,6], 15);
Result:
sum(3,8,4) = 15
sum(3,5,7) = 15
sum(9,6) = 15
sum(8,7) = 15
sum(4,5,6) = 15
sum(5,10) = 15
Javascript version:
const subsetSum = (numbers, target, partial = [], sum = 0) => {
if (sum < target)
numbers.forEach((num, i) =>
subsetSum(numbers.slice(i + 1), target, partial.concat([num]), sum + num));
else if (sum == target)
console.log('sum(%s) = %s', partial.join(), target);
}
subsetSum([3,9,8,4,5,7,10,6], 15);
Javascript one-liner that actually returns results (instead of printing it):
const subsetSum=(n,t,p=[],s=0,r=[])=>(s<t?n.forEach((l,i)=>subsetSum(n.slice(i+1),t,[...p,l],s+l,r)):s==t?r.push(p):0,r);
console.log(subsetSum([3,9,8,4,5,7,10,6], 15));
And my favorite, one-liner with callback:
const subsetSum=(n,t,cb,p=[],s=0)=>s<t?n.forEach((l,i)=>subsetSum(n.slice(i+1),t,cb,[...p,l],s+l)):s==t?cb(p):0;
subsetSum([3,9,8,4,5,7,10,6], 15, console.log);
Here is a Java version which is well suited for small N and very large target sum, when complexity O(t*N) (the dynamic solution) is greater than the exponential algorithm. My version uses a meet in the middle attack, along with a little bit shifting in order to reduce the complexity from the classic naive O(n*2^n) to O(2^(n/2)).
If you want to use this for sets with between 32 and 64 elements, you should change the int which represents the current subset in the step function to a long although performance will obviously drastically decrease as the set size increases. If you want to use this for a set with odd number of elements, you should add a 0 to the set to make it even numbered.
import java.util.ArrayList;
import java.util.List;
public class SubsetSumMiddleAttack {
static final int target = 100000000;
static final int[] set = new int[]{ ... };
static List<Subset> evens = new ArrayList<>();
static List<Subset> odds = new ArrayList<>();
static int[][] split(int[] superSet) {
int[][] ret = new int[2][superSet.length / 2];
for (int i = 0; i < superSet.length; i++) ret[i % 2][i / 2] = superSet[i];
return ret;
}
static void step(int[] superSet, List<Subset> accumulator, int subset, int sum, int counter) {
accumulator.add(new Subset(subset, sum));
if (counter != superSet.length) {
step(superSet, accumulator, subset + (1 << counter), sum + superSet[counter], counter + 1);
step(superSet, accumulator, subset, sum, counter + 1);
}
}
static void printSubset(Subset e, Subset o) {
String ret = "";
for (int i = 0; i < 32; i++) {
if (i % 2 == 0) {
if ((1 & (e.subset >> (i / 2))) == 1) ret += " + " + set[i];
}
else {
if ((1 & (o.subset >> (i / 2))) == 1) ret += " + " + set[i];
}
}
if (ret.startsWith(" ")) ret = ret.substring(3) + " = " + (e.sum + o.sum);
System.out.println(ret);
}
public static void main(String[] args) {
int[][] superSets = split(set);
step(superSets[0], evens, 0,0,0);
step(superSets[1], odds, 0,0,0);
for (Subset e : evens) {
for (Subset o : odds) {
if (e.sum + o.sum == target) printSubset(e, o);
}
}
}
}
class Subset {
int subset;
int sum;
Subset(int subset, int sum) {
this.subset = subset;
this.sum = sum;
}
}
Very efficient algorithm using tables i wrote in c++ couple a years ago.
If you set PRINT 1 it will print all combinations(but it wont be use the efficient method).
Its so efficient that it calculate more than 10^14 combinations in less than 10ms.
#include <stdio.h>
#include <stdlib.h>
//#include "CTime.h"
#define SUM 300
#define MAXNUMsSIZE 30
#define PRINT 0
long long CountAddToSum(int,int[],int,const int[],int);
void printr(const int[], int);
long long table1[SUM][MAXNUMsSIZE];
int main()
{
int Nums[]={3,4,5,6,7,9,13,11,12,13,22,35,17,14,18,23,33,54};
int sum=SUM;
int size=sizeof(Nums)/sizeof(int);
int i,j,a[]={0};
long long N=0;
//CTime timer1;
for(i=0;i<SUM;++i)
for(j=0;j<MAXNUMsSIZE;++j)
table1[i][j]=-1;
N = CountAddToSum(sum,Nums,size,a,0); //algorithm
//timer1.Get_Passd();
//printf("\nN=%lld time=%.1f ms\n", N,timer1.Get_Passd());
printf("\nN=%lld \n", N);
getchar();
return 1;
}
long long CountAddToSum(int s, int arr[],int arrsize, const int r[],int rsize)
{
static int totalmem=0, maxmem=0;
int i,*rnew;
long long result1=0,result2=0;
if(s<0) return 0;
if (table1[s][arrsize]>0 && PRINT==0) return table1[s][arrsize];
if(s==0)
{
if(PRINT) printr(r, rsize);
return 1;
}
if(arrsize==0) return 0;
//else
rnew=(int*)malloc((rsize+1)*sizeof(int));
for(i=0;i<rsize;++i) rnew[i]=r[i];
rnew[rsize]=arr[arrsize-1];
result1 = CountAddToSum(s,arr,arrsize-1,rnew,rsize);
result2 = CountAddToSum(s-arr[arrsize-1],arr,arrsize,rnew,rsize+1);
table1[s][arrsize]=result1+result2;
free(rnew);
return result1+result2;
}
void printr(const int r[], int rsize)
{
int lastr=r[0],count=0,i;
for(i=0; i<rsize;++i)
{
if(r[i]==lastr)
count++;
else
{
printf(" %d*%d ",count,lastr);
lastr=r[i];
count=1;
}
}
if(r[i-1]==lastr) printf(" %d*%d ",count,lastr);
printf("\n");
}
This is similar to a coin change problem
public class CoinCount
{
public static void main(String[] args)
{
int[] coins={1,4,6,2,3,5};
int count=0;
for (int i=0;i<coins.length;i++)
{
count=count+Count(9,coins,i,0);
}
System.out.println(count);
}
public static int Count(int Sum,int[] coins,int index,int curSum)
{
int count=0;
if (index>=coins.length)
return 0;
int sumNow=curSum+coins[index];
if (sumNow>Sum)
return 0;
if (sumNow==Sum)
return 1;
for (int i= index+1;i<coins.length;i++)
count+=Count(Sum,coins,i,sumNow);
return count;
}
}
I ported the C# sample to Objective-c and didn't see it in the responses:
//Usage
NSMutableArray* numberList = [[NSMutableArray alloc] init];
NSMutableArray* partial = [[NSMutableArray alloc] init];
int target = 16;
for( int i = 1; i<target; i++ )
{ [numberList addObject:#(i)]; }
[self findSums:numberList target:target part:partial];
//*******************************************************************
// Finds combinations of numbers that add up to target recursively
//*******************************************************************
-(void)findSums:(NSMutableArray*)numbers target:(int)target part:(NSMutableArray*)partial
{
int s = 0;
for (NSNumber* x in partial)
{ s += [x intValue]; }
if (s == target)
{ NSLog(#"Sum[%#]", partial); }
if (s >= target)
{ return; }
for (int i = 0;i < [numbers count];i++ )
{
int n = [numbers[i] intValue];
NSMutableArray* remaining = [[NSMutableArray alloc] init];
for (int j = i + 1; j < [numbers count];j++)
{ [remaining addObject:#([numbers[j] intValue])]; }
NSMutableArray* partRec = [[NSMutableArray alloc] initWithArray:partial];
[partRec addObject:#(n)];
[self findSums:remaining target:target part:partRec];
}
}
Here is a better version with better output formatting and C++ 11 features:
void subset_sum_rec(std::vector<int> & nums, const int & target, std::vector<int> & partialNums)
{
int currentSum = std::accumulate(partialNums.begin(), partialNums.end(), 0);
if (currentSum > target)
return;
if (currentSum == target)
{
std::cout << "sum([";
for (auto it = partialNums.begin(); it != std::prev(partialNums.end()); ++it)
cout << *it << ",";
cout << *std::prev(partialNums.end());
std::cout << "])=" << target << std::endl;
}
for (auto it = nums.begin(); it != nums.end(); ++it)
{
std::vector<int> remaining;
for (auto it2 = std::next(it); it2 != nums.end(); ++it2)
remaining.push_back(*it2);
std::vector<int> partial = partialNums;
partial.push_back(*it);
subset_sum_rec(remaining, target, partial);
}
}
Deduce 0 in the first place. Zero is an identiy for addition so it is useless by the monoid laws in this particular case. Also deduce negative numbers as well if you want to climb up to a positive number. Otherwise you would also need subtraction operation.
So... the fastest algorithm you can get on this particular job is as follows given in JS.
function items2T([n,...ns],t){
var c = ~~(t/n);
return ns.length ? Array(c+1).fill()
.reduce((r,_,i) => r.concat(items2T(ns, t-n*i).map(s => Array(i).fill(n).concat(s))),[])
: t % n ? []
: [Array(c).fill(n)];
};
var data = [3, 9, 8, 4, 5, 7, 10],
result;
console.time("combos");
result = items2T(data, 15);
console.timeEnd("combos");
console.log(JSON.stringify(result));
This is a very fast algorithm but if you sort the data array descending it will be even faster. Using .sort() is insignificant since the algorithm will end up with much less recursive invocations.
PHP Version, as inspired by Keith Beller's C# version.
bala's PHP version did not work for me, because I did not need to group numbers. I wanted a simpler implementation with one target value, and a pool of numbers. This function will also prune any duplicate entries.
Edit 25/10/2021: Added the precision argument to support floating point numbers (now requires the bcmath extension).
/**
* Calculates a subset sum: finds out which combinations of numbers
* from the numbers array can be added together to come to the target
* number.
*
* Returns an indexed array with arrays of number combinations.
*
* Example:
*
* <pre>
* $matches = subset_sum(array(5,10,7,3,20), 25);
* </pre>
*
* Returns:
*
* <pre>
* Array
* (
* [0] => Array
* (
* [0] => 3
* [1] => 5
* [2] => 7
* [3] => 10
* )
* [1] => Array
* (
* [0] => 5
* [1] => 20
* )
* )
* </pre>
*
* #param number[] $numbers
* #param number $target
* #param array $part
* #param int $precision
* #return array[number[]]
*/
function subset_sum($numbers, $target, $precision=0, $part=null)
{
// we assume that an empty $part variable means this
// is the top level call.
$toplevel = false;
if($part === null) {
$toplevel = true;
$part = array();
}
$s = 0;
foreach($part as $x)
{
$s = $s + $x;
}
// we have found a match!
if(bccomp((string) $s, (string) $target, $precision) === 0)
{
sort($part); // ensure the numbers are always sorted
return array(implode('|', $part));
}
// gone too far, break off
if($s >= $target)
{
return null;
}
$matches = array();
$totalNumbers = count($numbers);
for($i=0; $i < $totalNumbers; $i++)
{
$remaining = array();
$n = $numbers[$i];
for($j = $i+1; $j < $totalNumbers; $j++)
{
$remaining[] = $numbers[$j];
}
$part_rec = $part;
$part_rec[] = $n;
$result = subset_sum($remaining, $target, $precision, $part_rec);
if($result)
{
$matches = array_merge($matches, $result);
}
}
if(!$toplevel)
{
return $matches;
}
// this is the top level function call: we have to
// prepare the final result value by stripping any
// duplicate results.
$matches = array_unique($matches);
$result = array();
foreach($matches as $entry)
{
$result[] = explode('|', $entry);
}
return $result;
}
Example:
$result = subset_sum(array(5, 10, 7, 3, 20), 25);
This will return an indexed array with two number combination arrays:
3, 5, 7, 10
5, 20
Example with floating point numbers:
// Specify the precision in the third argument
$result = subset_sum(array(0.40, 0.03, 0.05), 0.45, 2);
This will return a single match:
0.40, 0.05
To find the combinations using excel - (its fairly easy).
(You computer must not be too slow)
Go to this site
Go to the "Sum to Target" page
Download the "Sum to Target" excel file.
Follow the directions on the website page.
hope this helps.
Swift 3 conversion of Java solution: (by #JeremyThompson)
protocol _IntType { }
extension Int: _IntType {}
extension Array where Element: _IntType {
func subsets(to: Int) -> [[Element]]? {
func sum_up_recursive(_ numbers: [Element], _ target: Int, _ partial: [Element], _ solution: inout [[Element]]) {
var sum: Int = 0
for x in partial {
sum += x as! Int
}
if sum == target {
solution.append(partial)
}
guard sum < target else {
return
}
for i in stride(from: 0, to: numbers.count, by: 1) {
var remaining = [Element]()
for j in stride(from: i + 1, to: numbers.count, by: 1) {
remaining.append(numbers[j])
}
var partial_rec = [Element](partial)
partial_rec.append(numbers[i])
sum_up_recursive(remaining, target, partial_rec, &solution)
}
}
var solutions = [[Element]]()
sum_up_recursive(self, to, [Element](), &solutions)
return solutions.count > 0 ? solutions : nil
}
}
usage:
let numbers = [3, 9, 8, 4, 5, 7, 10]
if let solution = numbers.subsets(to: 15) {
print(solution) // output: [[3, 8, 4], [3, 5, 7], [8, 7], [5, 10]]
} else {
print("not possible")
}
This can be used to print all the answers as well
public void recur(int[] a, int n, int sum, int[] ans, int ind) {
if (n < 0 && sum != 0)
return;
if (n < 0 && sum == 0) {
print(ans, ind);
return;
}
if (sum >= a[n]) {
ans[ind] = a[n];
recur(a, n - 1, sum - a[n], ans, ind + 1);
}
recur(a, n - 1, sum, ans, ind);
}
public void print(int[] a, int n) {
for (int i = 0; i < n; i++)
System.out.print(a[i] + " ");
System.out.println();
}
Time Complexity is exponential. Order of 2^n
I was doing something similar for a scala assignment. Thought of posting my solution here:
def countChange(money: Int, coins: List[Int]): Int = {
def getCount(money: Int, remainingCoins: List[Int]): Int = {
if(money == 0 ) 1
else if(money < 0 || remainingCoins.isEmpty) 0
else
getCount(money, remainingCoins.tail) +
getCount(money - remainingCoins.head, remainingCoins)
}
if(money == 0 || coins.isEmpty) 0
else getCount(money, coins)
}
#KeithBeller's answer with slightly changed variable names and some comments.
public static void Main(string[] args)
{
List<int> input = new List<int>() { 3, 9, 8, 4, 5, 7, 10 };
int targetSum = 15;
SumUp(input, targetSum);
}
public static void SumUp(List<int> input, int targetSum)
{
SumUpRecursive(input, targetSum, new List<int>());
}
private static void SumUpRecursive(List<int> remaining, int targetSum, List<int> listToSum)
{
// Sum up partial
int sum = 0;
foreach (int x in listToSum)
sum += x;
//Check sum matched
if (sum == targetSum)
Console.WriteLine("sum(" + string.Join(",", listToSum.ToArray()) + ")=" + targetSum);
//Check sum passed
if (sum >= targetSum)
return;
//Iterate each input character
for (int i = 0; i < remaining.Count; i++)
{
//Build list of remaining items to iterate
List<int> newRemaining = new List<int>();
for (int j = i + 1; j < remaining.Count; j++)
newRemaining.Add(remaining[j]);
//Update partial list
List<int> newListToSum = new List<int>(listToSum);
int currentItem = remaining[i];
newListToSum.Add(currentItem);
SumUpRecursive(newRemaining, targetSum, newListToSum);
}
}'
Recommended as an answer:
Here's a solution using es2015 generators:
function* subsetSum(numbers, target, partial = [], partialSum = 0) {
if(partialSum === target) yield partial
if(partialSum >= target) return
for(let i = 0; i < numbers.length; i++){
const remaining = numbers.slice(i + 1)
, n = numbers[i]
yield* subsetSum(remaining, target, [...partial, n], partialSum + n)
}
}
Using generators can actually be very useful because it allows you to pause script execution immediately upon finding a valid subset. This is in contrast to solutions without generators (ie lacking state) which have to iterate through every single subset of numbers
I did not like the Javascript Solution I saw above. Here is the one I build using partial applying, closures and recursion:
Ok, I was mainly concern about, if the combinations array could satisfy the target requirement, hopefully this approached you will start to find the rest of combinations
Here just set the target and pass the combinations array.
function main() {
const target = 10
const getPermutationThatSumT = setTarget(target)
const permutation = getPermutationThatSumT([1, 4, 2, 5, 6, 7])
console.log( permutation );
}
the currently implementation I came up with
function setTarget(target) {
let partial = [];
return function permute(input) {
let i, removed;
for (i = 0; i < input.length; i++) {
removed = input.splice(i, 1)[0];
partial.push(removed);
const sum = partial.reduce((a, b) => a + b)
if (sum === target) return partial.slice()
if (sum < target) permute(input)
input.splice(i, 0, removed);
partial.pop();
}
return null
};
}
An iterative C++ stack solution for a flavor of this problem. Unlike some other iterative solutions, it doesn't make unnecessary copies of intermediate sequences.
#include <vector>
#include <iostream>
// Given a positive integer, return all possible combinations of
// positive integers that sum up to it.
std::vector<std::vector<int>> print_all_sum(int target){
std::vector<std::vector<int>> output;
std::vector<int> stack;
int curr_min = 1;
int sum = 0;
while (curr_min < target) {
sum += curr_min;
if (sum >= target) {
if (sum == target) {
output.push_back(stack); // make a copy
output.back().push_back(curr_min);
}
sum -= curr_min + stack.back();
curr_min = stack.back() + 1;
stack.pop_back();
} else {
stack.push_back(curr_min);
}
}
return output;
}
int main()
{
auto vvi = print_all_sum(6);
for (auto const& v: vvi) {
for(auto const& i: v) {
std::cout << i;
}
std::cout << "\n";
}
return 0;
}
Output print_all_sum(6):
111111
11112
1113
1122
114
123
15
222
24
33
function solve(n){
let DP = [];
DP[0] = DP[1] = DP[2] = 1;
DP[3] = 2;
for (let i = 4; i <= n; i++) {
DP[i] = DP[i-1] + DP[i-3] + DP[i-4];
}
return DP[n]
}
console.log(solve(5))
This is a Dynamic Solution for JS to tell how many ways anyone can get the certain sum. This can be the right solution if you think about time and space complexity.

PHP: find two or more numbers from a list of numbers that add up towards a given amount

I am trying to create a little php script that can make my life a bit easier.
Basically, I am going to have 21 text fields on a page where I am going to input 20 different numbers. In the last field I will enter a number let's call it the TOTAL AMOUNT. All I want the script to do is to point out which numbers from the 20 fields added up will come up to TOTAL AMOUNT.
Example:
field1 = 25.23
field2 = 34.45
field3 = 56.67
field4 = 63.54
field5 = 87.54
....
field20 = 4.2
Total Amount = 81.90
Output: field1 + fields3 = 81.90
Some of the fields might have 0 as value because sometimes I only need to enter 5-15 fields and the maximum will be 20.
If someone can help me out with the php code for this, will be greatly appreciated.
If you look at oezis algorithm one drawback is immediately clear: It spends very much time summing up numbers which are already known not to work. (For example if 1 + 2 is already too big, it doesn't make any sense to try 1 + 2 + 3, 1 + 2 + 3 + 4, 1 + 2 + 3 + 4 + 5, ..., too.)
Thus I have written an improved version. It does not use bit magic, it makes everything manual. A drawback is, that it requires the input values to be sorted (use rsort). But that shouldn't be a big problem ;)
function array_sum_parts($vals, $sum){
$solutions = array();
$pos = array(0 => count($vals) - 1);
$lastPosIndex = 0;
$currentPos = $pos[0];
$currentSum = 0;
while (true) {
$currentSum += $vals[$currentPos];
if ($currentSum < $sum && $currentPos != 0) {
$pos[++$lastPosIndex] = --$currentPos;
} else {
if ($currentSum == $sum) {
$solutions[] = array_slice($pos, 0, $lastPosIndex + 1);
}
if ($lastPosIndex == 0) {
break;
}
$currentSum -= $vals[$currentPos] + $vals[1 + $currentPos = --$pos[--$lastPosIndex]];
}
}
return $solutions;
}
A modified version of oezis testing program (see end) outputs:
possibilities: 540
took: 3.0897309780121
So it took only 3.1 seconds to execute, whereas oezis code executed 65 seconds on my machine (yes, my machine is very slow). That's more than 20 times faster!
Furthermore you may notice, that my code found 540 instead of 338 possibilities. This is because I adjusted the testing program to use integers instead of floats. Direct floating point comparison is rarely the right thing to do, this is a great example why: You sometimes get 59.959999999999 instead of 59.96 and thus the match will not be counted. So, if I run oezis code with integers it finds 540 possibilities, too ;)
Testing program:
// Inputs
$n = array();
$n[0] = 6.56;
$n[1] = 8.99;
$n[2] = 1.45;
$n[3] = 4.83;
$n[4] = 8.16;
$n[5] = 2.53;
$n[6] = 0.28;
$n[7] = 9.37;
$n[8] = 0.34;
$n[9] = 5.82;
$n[10] = 8.24;
$n[11] = 4.35;
$n[12] = 9.67;
$n[13] = 1.69;
$n[14] = 5.64;
$n[15] = 0.27;
$n[16] = 2.73;
$n[17] = 1.63;
$n[18] = 4.07;
$n[19] = 9.04;
$n[20] = 6.32;
// Convert to Integers
foreach ($n as &$num) {
$num *= 100;
}
$sum = 57.96 * 100;
// Sort from High to Low
rsort($n);
// Measure time
$start = microtime(true);
echo 'possibilities: ', count($result = array_sum_parts($n, $sum)), '<br />';
echo 'took: ', microtime(true) - $start;
// Check that the result is correct
foreach ($result as $element) {
$s = 0;
foreach ($element as $i) {
$s += $n[$i];
}
if ($s != $sum) echo '<br />FAIL!';
}
var_dump($result);
sorry for adding a new answer, but this is a complete new solution to solve all problems of life, universe and everything...:
function array_sum_parts($n,$t,$all=false){
$count_n = count($n); // how much fields are in that array?
$count = pow(2,$count_n); // we need to do 2^fields calculations to test all possibilities
# now i want to look at every number from 1 to $count, where the number is representing
# the array and add up all array-elements which are at positions where my actual number
# has a 1-bit
# EXAMPLE:
# $i = 1 in binary mode 1 = 01 i'll use ony the first array-element
# $i = 10 in binary mode 10 = 1010 ill use the secont and the fourth array-element
# and so on... the number of 1-bits is the amount of numbers used in that try
for($i=1;$i<=$count;$i++){ // start calculating all possibilities
$total=0; // sum of this try
$anzahl=0; // counter for 1-bits in this try
$k = $i; // store $i to another variable which can be changed during the loop
for($j=0;$j<$count_n;$j++){ // loop trough array-elemnts
$total+=($k%2)*$n[$j]; // add up if the corresponding bit of $i is 1
$anzahl+=($k%2); // add up the number of 1-bits
$k=$k>>1; //bit-shift to the left for looking at the next bit in the next loop
}
if($total==$t){
$loesung[$i] = $anzahl; // if sum of this try is the sum we are looking for, save this to an array (whith the number of 1-bits for sorting)
if(!$all){
break; // if we're not looking for all solutions, make a break because the first one was found
}
}
}
asort($loesung); // sort all solutions by the amount of numbers used
// formating the solutions to getting back the original array-keys (which shoud be the return-value)
foreach($loesung as $val=>$anzahl){
$bit = strrev(decbin($val));
$total=0;
$ret_this = array();
for($j=0;$j<=strlen($bit);$j++){
if($bit[$j]=='1'){
$ret_this[] = $j;
}
}
$ret[]=$ret_this;
}
return $ret;
}
// Inputs
$n[0]=6.56;
$n[1]=8.99;
$n[2]=1.45;
$n[3]=4.83;
$n[4]=8.16;
$n[5]=2.53;
$n[6]=0.28;
$n[7]=9.37;
$n[8]=0.34;
$n[9]=5.82;
$n[10]=8.24;
$n[11]=4.35;
$n[12]=9.67;
$n[13]=1.69;
$n[14]=5.64;
$n[15]=0.27;
$n[16]=2.73;
$n[17]=1.63;
$n[18]=4.07;
$n[19]=9.04;
$n[20]=6.32;
// Output
$t=57.96;
var_dump(array_sum_parts($n,$t)); //returns one possible solution (fuc*** fast)
var_dump(array_sum_parts($n,$t,true)); // returns all possible solution (relatively fast when you think of all the needet calculations)
if you don't use the third parameter, it returns the best (whith the least amount numbers used) solution as array (whith keys of the input-array) - if you set the third parameter to true, ALL solutions are returned (for testing, i used the same numbers as zaf in his post - there are 338 solutions in this case, found in ~10sec on my machine).
EDIT:
if you get all, you get the results ordered by which is "best" - whithout this, you only get the first found solution (which isn't necessarily the best).
EDIT2:
to forfil the desire of some explanation, i commented the essential parts of the code . if anyone needs more explanation, please ask
1. Check and eliminate fields values more than 21st field
2. Check highest of the remaining, Add smallest,
3. if its greater than 21st eliminate highest (iterate this process)
4. If lower: Highest + second Lowest, if equal show result.
5. if higher go to step 7
6. if lower go to step 4
7. if its lower than add second lowest, go to step 3.
8. if its equal show result
This is efficient and will take less execution time.
Following method will give you an answer... almost all of the time. Increase the iterations variable to your taste.
<?php
// Inputs
$n[1]=8.99;
$n[2]=1.45;
$n[3]=4.83;
$n[4]=8.16;
$n[5]=2.53;
$n[6]=0.28;
$n[7]=9.37;
$n[8]=0.34;
$n[9]=5.82;
$n[10]=8.24;
$n[11]=4.35;
$n[12]=9.67;
$n[13]=1.69;
$n[14]=5.64;
$n[15]=0.27;
$n[16]=2.73;
$n[17]=1.63;
$n[18]=4.07;
$n[19]=9.04;
$n[20]=6.32;
// Output
$t=57.96;
// Let's try to do this a million times randomly
// Relax, thats less than a blink
$iterations=1000000;
while($iterations-->0){
$z=array_rand($n, mt_rand(2,20));
$total=0;
foreach($z as $x) $total+=$n[$x];
if($total==$t)break;
}
// If we did less than a million times we have an answer
if($iterations>0){
$total=0;
foreach($z as $x){
$total+=$n[$x];
print("[$x] + ". $n[$x] . " = $total<br/>");
}
}
?>
One solution:
[1] + 8.99 = 8.99
[4] + 8.16 = 17.15
[5] + 2.53 = 19.68
[6] + 0.28 = 19.96
[8] + 0.34 = 20.3
[10] + 8.24 = 28.54
[11] + 4.35 = 32.89
[13] + 1.69 = 34.58
[14] + 5.64 = 40.22
[15] + 0.27 = 40.49
[16] + 2.73 = 43.22
[17] + 1.63 = 44.85
[18] + 4.07 = 48.92
[19] + 9.04 = 57.96
A probably inefficient but simple solution with backtracking
function subset_sums($a, $val, $i = 0) {
$r = array();
while($i < count($a)) {
$v = $a[$i];
if($v == $val)
$r[] = $v;
if($v < $val)
foreach(subset_sums($a, $val - $v, $i + 1) as $s)
$r[] = "$v $s";
$i++;
}
return $r;
}
example
$ns = array(1, 2, 6, 7, 11, 5, 8, 9, 3);
print_r(subset_sums($ns, 11));
result
Array
(
[0] => 1 2 5 3
[1] => 1 2 8
[2] => 1 7 3
[3] => 2 6 3
[4] => 2 9
[5] => 6 5
[6] => 11
[7] => 8 3
)
i don't think the answer isn't as easy as nik mentioned. let's ay you have the following numbers:
1 2 3 6 8
looking for an amount of 10
niks solution would do this (if i understand it right):
1*8 = 9 = too low
adding next lowest (2) = 11 = too high
now he would delete the high number and start again taking the new highest
1*6 = 7 = too low
adding next lowest (2) = 9 = too low
adding next lowest (3) = 12 = too high
... and so on, where the perfect answer would simply
be 8+2 = 10... i think the only solution is trying every possible combination of
numbers and stop if the amaunt you are looking for is found (or realy calculate all, if there are different solutions and save which one has used least numbers).
EDIT: realy calculating all possible combiations of 21 numbers will end up in realy, realy, realy much calculations - so there must be any "intelligent" solution for adding numbers in a special order (lik that one in niks post - with some improvements, maybe that will bring us to a reliable solution)
Without knowing if this is a homework assignment or not, I can give you some pseudo code as a hint for a possible solution, note the solution is not very efficient, more of a demonstration.
Hint:
Compare each field value to all field value and at each iteration check if their sum is equal to TOTAL_AMOUNT.
Pseudo code:
for i through field 1-20
for j through field 1-20
if value of i + value of j == total_amount
return i and j
Update:
What you seem to be having is the Subset sum problem, given within the Wiki link is pseudo code for the algorithm which might help point you in the right direction.

What does the percent sign mean in PHP?

What exactly does this mean?
$number = ( 3 - 2 + 7 ) % 7;
It's the modulus operator, as mentioned, which returns the remainder of a division operation.
Examples: 3%5 returns 3, as 3 divided by 5 is 0 with a remainder of 3.
5 % 10 returns 5, for the same reason, 10 goes into 5 zero times with a remainder of 5.
10 % 5 returns 0, as 10 divided by 5 goes exactly 2 times with no remainder.
In the example you posted, (3 - 2 + 7) works out to 8, giving you 8 % 7, so $number will be 1, which is the remainder of 8/7.
It is the modulus operator:
$a % $b = Remainder of $a
divided by $b.
It is often used to get "one element every N elements". For instance, to only get one element each three elements:
for ($i=0 ; $i<10 ; $i++) {
if ($i % 3 === 0) {
echo $i . '<br />';
}
}
Which gets this output:
0
3
6
9
(Yeah, OK, $i+=3 would have done the trick; but this was just a demo.)
It is the modulus operator. In the statement $a % $b the result is the remainder when $a is divided by $b
Using this operator one can easily calculate odd or even days in month for example, if needed for schedule or something:
<?php echo (date(j) % 2 == 0) ? 'Today is even date' : 'Today is odd date'; ?>
% means modulus.
Modulus is the fancy name for "remainder after divide" in mathematics.
(numerator) mod (denominator) = (remainder)
In PHP
<?php
$n = 13;
$d = 7
$r = "$n % $d";
echo "$r is ($n mod $d).";
?>
In this case, this script will echo
6 is (13 mod 7).
Where $r is for the remainder (answer), $n for the numerator and $d for the denominator. The modulus operator is commonly used in public-key cryptography due to its special characteristic as a one-way function.
Since so many people say "modulus finds the remainder of the divisor", let's start by defining exactly what a remainder is.
In mathematics, the remainder is the amount "left over" after
performing some computation. In arithmetic, the remainder is the
integer "left over" after dividing one integer by another to produce
an integer quotient (integer division).
See: http://en.wikipedia.org/wiki/Remainder
So % (integer modulus) is a simple way of asking, "How much of the divisor is left over after dividing?"
To use the OP's computation of (3 - 2 + 7) = 8 % 7 = 1:
It can be broken down into:
(3 - 2 + 7) = 8
8 / 7 = 1.143 #Rounded up
.143 * 7 = 1.001 #Which results in an integer of 1
7 can go into 8 1 time with .14 of 7 leftover
That's all there is to it. I hope this helps to simplify how exactly modulus works.
Additional examples using different divisors with 21.
Breakdown of 21 % 3 = 0:
21 / 3 = 7.0
3 * 0 = 0
(3 can go into 21 7 times with 0 of 3 leftover)
Breakdown of 21 % 6 = 3:
21 / 6 = 3.5
.5 * 6 = 3
(6 can go into 21 3 times with .5 of 6 leftover)
Breakdown of 21 % 8 = 5:
21 / 8 = 2.625
.625 * 8 = 5
(8 can go into 21 2 times with .625 of 8 leftover)

Detecting if integer can be written as sum of given integers

Supposing I'm having the constants 3,5,6,9,10. How can I detect how to write $n, which is the input, as a sum of these constants with the least number of terms?
Examples
$n=10, S=10
$n=18, S=9+9
$n=24, S=9+9+6
$n=27, S=9+9+9
$n=28, S=10+9+9
Thanks
This is another Python solution, but hopefully it's easy for you to convert to PHP (I would do it myself, but I'm no PHP expert - I'm sure you could do a better job of it). I've tried not to use any advanced Python funcitons, so that it is easier for non-Python readers to understand, but if some Python syntax is not clear, please just ask.
allowed = [3, 5, 6, 9, 10]
n = 28
solutions = [ None ] * (n + 1)
solutions[0] = []
for i in range(n + 1):
if solutions[i] is None: continue
for a in allowed:
if i + a > n: continue
if solutions[i + a] is None or len(solutions[i]) + 1 < len(solutions[i + a]):
solutions[i + a] = solutions[i] + [a]
print solutions[28]
It works by starting from 0 and building up to the desired number, keeping a cache of the shortest solution seen so far for each possible total. It has a running time of O(n * a), where a is the number of different allowed values.
By the way, your answer to n=28 is wrong. It should be [9, 9, 10].
Update: here's my attempt at a PHP solution:
<?php
$allowed = array(3, 5, 6, 9, 10);
$n = 28;
$solutions = array();
$solutions[0] = array();
foreach (range(0, $n) as $i) {
if (is_null($solutions[$i])) continue;
foreach ($allowed as $a) {
if ($i + $a > $n) continue;
if (is_null($solutions[$i + $a]) ||
sizeof($solutions[$i]) + 1 < sizeof($solutions[$i + $a])) {
$solutions[$i + $a] = array_merge($solutions[$i], array($a));
}
}
}
var_dump($solutions[$n]);
?>
It gives the right answer, but please be aware that I'm not a professional PHP coder - I just looked up the equivalent functions in the PHP documentation.
This is Mark Byers' algorithm, rewritten using loop structures that are more familiar to PHP developers, and constructs that won't generate PHP notices. $C is your set of integers, $S the solutions.
$n = 28;
$C = array(3, 5, 6, 9, 10);
$S = array(array());
// if your set isn't sorted already, you have to call sort()
//sort($C);
for ($i = 0; $i <= $n; ++$i)
{
if (!isset($S[$i]))
{
continue;
}
foreach ($C as $v)
{
if ($i + $v > $n)
{
break;
}
if (!isset($S[$i + $v])
|| count($S[$i + $v]) > 1 + count($S[$i]))
{
$S[$i + $v] = $S[$i];
$S[$i + $v][] = $v;
}
}
}
print_r($S[$n]);
Two obvious approaches suggest themselves:
Write a series of linear equations,
and solve to find various solutions.
Choose one with the least number of
terms.
Trial and error, starting
with the largest terms first.
Find all possible solutions for "S=3A+5B+6C+9D+10E" then choose the one with the most 0 values for A,B,C,D,E
a rough sketch of an unscalable but correct solution (sorry, so far its only python ..):
#!/usr/bin/env python
import itertools, sys
pool = [3, 5, 6, 9, 10]
repeat, found, solutions = 1, False, set()
try: x = int(sys.argv[1])
except: x = 42
while not found:
for n in itertools.product(pool, repeat=repeat):
s = sum(n)
if s == x:
solutions.add(n)
found = True
break
repeat = repeat + 1
print solutions
would yield:
$ python 1850629.py 11
set([(5, 6)])
$ python 1850629.py 19
set([(9, 10)])
$ python 1850629.py 21
set([(3, 9, 9)])
$ python 1850629.py 42
set([(3, 9, 10, 10, 10)])
In addition to the excellent general answers already provided, bear in mind that if your set of values has certain properties, much more optimal solutions exist.
Specifically, if your solution is 'minimal' - that is, a single best solution exists for any value - then you can find the smallest number of elements using a 'greedy' algorithm: Simply add the largest value until the remainder is smaller than it, repeat with the next largest value, and so forth.
As an example, the denominations used for money in many countries are .01, .02, .05, .10, .20, .50, 1, 2, 5, .... This set is minimal, so you can just repeatedly add the largest valid denomination.
NP-complete problem
Subset sum problem

Categories