PHP CodeIgniter encrypt class - php

I would like to ask you whether it is safe to use this class to store users' passwords in database.
https://www.codeigniter.com/user_guide/libraries/encryption.html
I generated some random string (32 chars) as encryption key.
For encryption I would use $this->encrypt->encode($pwd)
The only thing I would like to know whether it is safe or I should use md5 or sha1 or something different.
THanks

It's pretty safe because decryption will need access to your salt key, in the config file. But I recommend you only use this method if you REALLY need decryption. For passwords usually is not needed.
Better than that, use SHA1. Double encrypt your passwords with a random seed.
$seed = random_string();
$pwd = sha1($pwd . $this->config->item('encryption_key'));
$pwd = sha1($pwd . $seed);
Then store both (pwd and seed) in your database. When checking if password match, encrypt with SQL.

Related

Confusing PHP BCrypt implementation

I'm trying to find a hashing algorithm to use to save my passwords in the DB (along with a salt). I found this on SO: How do you use bcrypt for hashing passwords in PHP?. The top answer has a library that seems to work. I'm just a bit confused by the verify method.
To run the script, the author of the library provides:
$bcrypt = new Bcrypt(15);
$hash = $bcrypt->hash('password');
$isGood = $bcrypt->verify('password', $hash);
The hash method takes the input string and hashes it using mcrypt + a salt. The result is returned to $hash. Then the verify method takes the same input as hash method + $hash. verify then calls mcrypt + the value of $hash (instead of some random salt) -- and somehow the results are the same $hash???
Simplified:
hash = password + salt
verify = password + hash
verify = hash <-- huh???
What did I miss?
ALSO:
I plan to modify the code such that hash method accepts a $salt parameter. I will make getSalt a public method. This way, I can get a salt, store it in the DB, store the hash in the DB, and use user's input + salt to see if it hashes to what I have stored in the DB. Any problems with this idea?
I'm not familiar with the actual bcrypt, but something along the following lines must be what happens:
When you create the "hash", $bcrypt->hash('password') returns a string that contains both the hash value and the initial salt.
When you subsequently say $bcrypt->verify('password', $mystring), the function first reads the salt part out of your input string, then creates the hash again with that salt, and finally compares that computed hash with the hash part of your input string.
In any salinated hashing scheme, you will always have to store the salt along with the hash value.
The hash in this case also contains the salt. It's concatenated to the beginning of the string, usually as something like $2a$12$SALT.... Passing the hash to verify is just done to use that salt value again, the rest of the hash is ignored. That also means you do not need to modify the function for use with salts, that's already part of the algorithm.

php users passwords protection

i'm testing several combinations of sha1 and md5:
<?php
$test = 'fail test';
echo nl2br ("Text: $test\n");
echo nl2br ("md5: ".md5($test)."\nsha1: ".sha1($test)."\nsha1(md5): ".sha1(md5($test))."\nmd5(sha1): ".md5(sha1($test)));
?>
Output:
Text: fail test
md5: 748410d0085967c496d54dd8fcbecc96
sha1: d730125e8cb8576459173655148fb6896ef44c09
sha1(md5): faa3ebeecfec45e509e93e6b245a69e2a78785ea
md5(sha1): b48e89b85c350c91eb302c1de96d4249
Which one better, or maybe user something else ? If yes, what then ?
Both of them are cryptographic hash functions that operate 1-way only, the main difference being that MD5 output size is 128 bits whereas SHA-1 is 160 bits. In brief, I don't see they are much different to use despite MD5 is more common these days.
Curiously, I can't really see how md5($text) is different from md5(sha($text)) when they all encrypted to a 32 character-long string, what about md5($text."token") for example?
And, what do you mean by better? Is it more good looking or more security? See bcrypt if you prefer security :) Wikipedia: http://en.wikipedia.org/wiki/Bcrypt
Hashing a hash adds no extra security. (In fact, it might make it worse if the person has a hash-of-hash lookup table.)
The best hash will be the one that is computationally the most expensive to perform without any vulnerabilities. I would hash passwords with at least sha-256.
Always hash your passwords with a salted key. This key should be unique per password. It doesn't need to be stored privately. The purpose of a salted password is that the hacker who gained access to your database cannot simply compare the hash with a known list of hashes that correspond to common passwords. Instead, he must try to brute force the password by trying every possible password.
By using a unique salt per password, you guarantee that each hash in the database is different, even if they use the same password.
To salt a password, simply create a random string of characters and append it to the password. Here's a sample hash with a 48-bit salt and sha-256:
function make_password($password)
{
# random 48-bit salt (8 chars when base64 encoded)
$salt = base64_encode(pack('S3', mt_rand(0,0xffff), mt_rand(0,0xffff), mt_rand(0, 0xffff)));
return $salt.hash('sha256', $salt.$password);
}
function check_password($password, $hash)
{
$salt = substr($hash, 0, 8);
return hash('sha256', $salt.$password) == substr($hash, 8);
}
$password = 'password';
$hash = make_password('password');
echo $hash."\n";
var_dump(check_password('password', $hash));
var_dump(check_password('wrong', $hash));
Every time you run it, the hash will be different. To validate a password, you select the row where the username matches, and then call check_password($password_from_user, $hash_from_db).
Here's a sample output:
AzrD1jZzc693714a43ad5dfd4106c0a620ef23ff9915070711fa170a6670b8164862b496
bool(true)
bool(false)
You can use a larger salt or a stronger hashing algorithm if you prefer. But at minimum, I would use something like the above.
You should salt your passwords, ALWAYS. This doesn't stop brute force through a login form but if someone managed to get the details, it would be much harder to crack (rainbow tables would be useless unless they manage to get your salt too)
Essentially, if you adding onto the original data or mangling in a controlled way, it will make security a little better. No-one can ever reverse a hash but they can find other inputs thats match the hash. Mangling the user input will make it harder to login for the hackers.
for example, if a user's pass is 123456, if you add a salt of "salt" to it so it becomes 123456salt, the MD5 of this would be 207acd61a3c1bd506d7e9a4535359f8a. A hacker could crack this to become 123456salt but when it comes to using that on your login form, your code will add salt again and the login will fail.

How to create and store password hashes with Blowfish in PHP

1) How do you create secure Blowfish hashes of passwords with crypt()?
$hash = crypt('somePassword', '$2a$07$nGYCCmhrzjrgdcxjH$');
1a) What is the significance of "$2a"? Does it just indicate that the Blowfish algorithm should be used?
1b) What is the significance of "$07"? Does a higher value imply a more secure hash?
1c) What is the significance of "$nGYCCmhrzjrgdcxjH$"? Is this the salt that will be used? Should this be randomly generated? Hard-coded?
2) How do you store Blowfish hashes?
echo $hash;
//Output: $2a$07$nGYCCmhrzjrgdcxjH$$$$.xLJMTJxaRa12DnhpAJmKQw.NXXZHgyq
2a) What part of this should be stored in the database?
2b) What data type should be used for the column (MySQL)?
3) How should one verify a login attempt?
You should store the entire output of crypt, there's not a lot of point in splitting it up, because you need to generate a new salt for each password you're hashing in any case. Using a fixed hidden salt as mentioned by Matt is wrong - the salt should be different for every hash.
For more information see http://www.openwall.com/articles/PHP-Users-Passwords - I recommend using the phpass library because it handles generating a random salt for you, unlike crypt().
1a) Strength of encryption - requirement in the range of 4..31. See http://php.net/manual/en/function.crypt.php
1b) See 1a
1c) See 1a. 'salt' should not be random, or you would not be able to regenerate the same hash for a given input - see 3.
2a) Strictly speaking, everything except the hash (in case database is compromised). Also, store your salt in a file not accessible beneath the web server's document root and include it. Set it with the strictest permissions possible; ideally read only to web host service (e.g. apache), no write or execute privileges. Less strictly speaking, depends how defensive you wish to be against hackers. Not storing the salt just makes life more difficult; they still have to get the data being input to the algorithm right - but why make it easier?
2b) VARCHAR(32) should be fine for blowfish, if not storing the hash
3) Assuming you've already run the proper injection prevention code, etc.. so please don't just copy the below blindly (and ideally use PDO instead of mysql extension). The below is specific to blowfish, SHA-256 and SHA-512 which all return the salt within the hash. Would need modification for other algorithms...
//store this in another file outside web directory and include it
$salt = '$2a$07$somevalidbutrandomchars$'
...
//combine username + password to give algorithm more chars to work with
$password_hash = crypt($valid_username . $valid_password, $salt)
//Anything less than 13 chars is a failure (see manual)
if (strlen($password_hash) < 13 || $password_hash == $salt)
then die('Invalid blowfish result');
//Drop the salt from beginning of the hash result.
//Note, irrespective of number of chars provided, algorithm will always
//use the number defined in constant CRYPT_SALT_LENGTH
$trimmed_password_hash = substring($password_hash, CRYPT_SALT_LENGTH);
mysql_query("INSERT INTO `users` (username,p assword_hash) VALUES '$valid_username', '$trimmed_password_hash'");
...
$dbRes = mysql_query("SELECT password_hash FROM `users` WHERE username = '$user_input_username' LIMIT 1");
//re-apply salt to output of database and re-run algorithm testing for match
if (substring($salt, CRYPT_SALT_LENGTH) . mysql_result($dbRes, 0, 'password_hash') ) ===
crypt($user_input_username . $user_input_password, $salt) ) {
//... do stuff for validated user
}

Encrypt password before storing in database?

I have a password being passed from my iPhone app to the database via a php script, user.php.
The variable $pass is populated by the following:
$pass = str_replace("'", "", $_REQUEST['pass']);
How can I encrypt this before it's inserted into my database? I've read a little about the different techniques, but looking for the best way to manage this.
Thanks to everyone.
While the answer below is technically still correct, php has new recommendations with regards to the hashing algorithms to use. Their recommendation, as of php >= 5.5.0, is to use the password_hash and password_verify functions to hash and verify hashed passwords . As an added benefit, these functions automatically include an individualized salt as part of the returned hash, so you don't need to worry about that explicitly.
If you don't care about retrieving the actual password's value (from the database encrypted value), you can run a one-way hash algorithm on it (such as sha1). This function will return a specific length string (hash) which cannot be used to find the original string (theoretically). It is possible that two different strings could create the same hash (called a collision) but this shouldn't be a problem with passwords.
Example:
$pass = sha1($_REQUEST['pass']);
One thing, to make it a little more secure is to add a salt to the hash and run the hash function again. This makes it more difficult to generate a password hash maliciously since the salt value is handled server-side only.
Example:
$pass = sha1(sha1($_REQUEST['pass']).sha1("mySalt#$#(%"));
Use php's crypt library. Md5 is not encryption, it is hashing.
Also, salt your passwords. Why?
This answer
Another good answer
First, you should create a random user salt. Then you should store that and the password hash in the database.
$salt = md5(unique_id().mt_rand().microtime());
$pass = sha1($salt.$_REQUEST['pass']);
and save the $salt and $pass in the database. Then when they go to login you look up their row and check the hash:
$user = query('SELECT * FROM `user` WHERE username = ?', array($_REQUEST['username']));
if($user)
{
// If the password they give maches
if($user->pass === sha1($user->salt. $_REQUEST['pass']))
{
// login
}
else
{
// bad password
}
}
else
{
// user not found
}
Creating a user salt for each account insures rainbow tables are useless and anyone that broken into your server would have to brute-force each password.
Use crypt with some salt. Such as
$user = strip_tags(substr($_REQUEST['user'],0,32));
$plain_pw = strip_tags(substr($_REQUEST['pass'],0,32));
$password = crypt(md5($plain_pw),md5($user));
as on http://www.ibm.com/developerworks/opensource/library/os-php-encrypt/
Most basic: Hash it with MD5 or SHA1
$newpass = md5($_REQUEST['pass']);
or
$newpass = sha1($_REQUEST['pass']);
Recently I started storing the username hashed as well, so login attempts are secure using only hashed data for comparisons.
You can "salt" the hashes with extra data so if they are compromised, it's value cannot be found (try googling some simple hashed words).. i.e. use a site-wide string just to alter the standard hash like md5("mySiteSalt!!" . $_REQUEST['pass']); or something more advanced.
You should use SHA1 to hash your passwords for storage in the database. It's the simplest, yet most effective way to store passwords:
$password = sha1($password);
It's also exceptionally safe. Though the integrity of it is beginning to creep, it's rather easy to upgrade this function to SHA-256 (which is incredibly secure).
To find out why md5, sha1 and their speedy friends might not be a good idea, you should read the post Enough With The Rainbow Tables: What You Need To Know About Secure Password Schemes by Thomas Ptacek. The gist:
Finally, we learned that if we want to
store passwords securely we have three
reasonable options: PHK’s MD5 scheme,
Provos-Maziere’s Bcrypt scheme, and
SRP. We learned that the correct
choice is Bcrypt.
Note: it's PHK, not php.

Am I using PHP's crypt() function correctly?

I've been using PHP's crypt() as a way to store and verify passwords in my database. I use hashing for other things, but crypt() for passwords. The documentation isn't that good and there seems to be a lot of debate. I'm using blowfish and two salts to crypt a password and store it in the database. Before I would store the salt and the encrypted password, (like a salted hash) but realized its redundant because the salt is part of the encrypted password string.
I'm a little confused on how rainbow table attacks would work on crypt(), anyway does this look correct from a security standpoint. I use a second salt to append to the password to increase the entropy of short passwords, probably overkill but why not?
function crypt_password($password) {
if ($password) {
//find the longest valid salt allowed by server
$max_salt = CRYPT_SALT_LENGTH;
//blowfish hashing with a salt as follows: "$2a$", a two digit cost parameter, "$", and 22 base 64
$blowfish = '$2a$10$';
//get the longest salt, could set to 22 crypt ignores extra data
$salt = get_salt ( $max_salt );
//get a second salt to strengthen password
$salt2 = get_salt ( 30 ); //set to whatever
//append salt2 data to the password, and crypt using salt, results in a 60 char output
$crypt_pass = crypt ( $password . $salt2, $blowfish . $salt );
//insert crypt pass along with salt2 into database.
$sql = "insert into database....";
return true;
}
}
function get_salt($length) {
$options = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789./';
$salt = '';
for($i = 0; $i <= $length; $i ++) {
$options = str_shuffle ( $options );
$salt .= $options [rand ( 0, 63 )];
}
return $salt;
}
function verify_password($input_password)
{
if($input_password)
{
//get stored crypt pass,and salt2 from the database
$stored_password = 'somethingfromdatabase';
$stored_salt2 = 'somethingelsefromdatabase';
//compare the crypt of input+stored_salt2 to the stored crypt password
if (crypt($input_password . $stored_salt2, $stored_password) == $stored_password) {
//authenticated
return true;
}
else return false;
}
else return false;
}
You really should have a look at PHPASS: http://www.openwall.com/phpass/ It's a password hashing framework using crypt() which is used in projects like Wordpress and phpBB.
There is also an excellent article on this website about password hashing, salting and stretching using crypt(): http://www.openwall.com/articles/PHP-Users-Passwords
UPDATE:
Currently there's an alternative for the PHPASS library. In the next version of PHP there are special functions for hashing and verifying passwords (using bcrypt): http://www.php.net/manual/en/ref.password.php. There is a compatibility library that implements these functions for PHP 5.3.7+: https://github.com/ircmaxell/password_compat
Your use of crypt() is fine. crypt($input, $stored) == $stored is the way it is designed to be used.
Your get_salt() function is not great, since it is using the often-poor rand() function. You should consider using a stronger random function, like openssl_random_pseudo_bytes(), instead.
The idea of a rainbow table is that an attacker can make a table with all possible passwords and their hashes at home.
E.g.
PASSWORD HASH
iloveSO gjroewjgo
password knbnogjwm
secret gjroehghe
jbieber rewgroewj
etc.
With this table, the attacker can quickly convert any hash to a password. Rainbow table uses some tricks so that not all hashes have to be stored, but it still computes all hashes beforehand.
By using a salt, even when storing it with the password, you make this much harder. Instead of hashing every word in a dictionary, the attacker would now have to hash every word with every salt. With a long enough salt, this gives enough combinations to make it unfeasible to compute all these hashes.
So a salt is not meant to be an extra password, known only to the application, it is meant to change the hash function so that it is non-standard.
This is a misuse of crypt() because you are using a deprecated primitive. Blowfish is very old, twofish is the replacement and even that is old because threefish is almost finalized. You should be using a member of the sha2 family, sha256 or sha512 are both good choices. crypt() can be used with sha256 or sha512, you should use the CRYPT_SHA256 CRYPT_SHA512 parameters respectively.
Also your salts have a very small entropy/size ratio, you are only using an alphanumeric set which is a joke because alphanumeric rainbow tables are the most common. You should be using a full byte which base256, and I recommend a salt that is 256 bytes long. Keep in mind all hash functions are binary safe by definition thus you shouldn't have to worry about null bytes and the like.
Use SHA-512 (if available) with a salt which includes time() and openssl_random_pseudo_bytes(). Crypt is consolidated / efficient because it returns the salt inserted with the hashed string.

Categories