Great Circle Distance question - php

I am familiar with the formula to calculate the Great Circle Distance between two points.
i.e.
<?php
$theta = $lon1 - $lon2;
$dist = sin(deg2rad($lat1)) * sin(deg2rad($lat2)) + cos(deg2rad($lat1)) * cos(deg2rad($lat2)) * cos(deg2rad($theta));
$dist = acos($dist);
$dist = rad2deg($dist);
//convert degrees to distance depending on units desired
?>
What I need though, is the reverse of this. Given a starting point, a distance, and a simple cardinal NSEW direction, to calculate the position of the destination point. It's been a long time since I was in a math class. ;)

To answer my own question just so it's here for anyone curious, a PHP class as converted from the C function provided by Chad Birch:
class GreatCircle
{
/*
* Find a point a certain distance and vector away from an initial point
* converted from c function found at: http://sam.ucsd.edu/sio210/propseawater/ppsw_c/gcdist.c
*
* #param int distance in meters
* #param double direction in degrees i.e. 0 = North, 90 = East, etc.
* #param double lon starting longitude
* #param double lat starting latitude
* #return array ('lon' => $lon, 'lat' => $lat)
*/
public static function getPositionByDistance($distance, $direction, $lon, $lat)
{
$metersPerDegree = 111120.00071117;
$degreesPerMeter = 1.0 / $metersPerDegree;
$radiansPerDegree = pi() / 180.0;
$degreesPerRadian = 180.0 / pi();
if ($distance > $metersPerDegree*180)
{
$direction -= 180.0;
if ($direction < 0.0)
{
$direction += 360.0;
}
$distance = $metersPerDegree * 360.0 - $distance;
}
if ($direction > 180.0)
{
$direction -= 360.0;
}
$c = $direction * $radiansPerDegree;
$d = $distance * $degreesPerMeter * $radiansPerDegree;
$L1 = $lat * $radiansPerDegree;
$lon *= $radiansPerDegree;
$coL1 = (90.0 - $lat) * $radiansPerDegree;
$coL2 = self::ahav(self::hav($c) / (self::sec($L1) * self::csc($d)) + self::hav($d - $coL1));
$L2 = (pi() / 2) - $coL2;
$l = $L2 - $L1;
$dLo = (cos($L1) * cos($L2));
if ($dLo != 0.0)
{
$dLo = self::ahav((self::hav($d) - self::hav($l)) / $dLo);
}
if ($c < 0.0)
{
$dLo = -$dLo;
}
$lon += $dLo;
if ($lon < -pi())
{
$lon += 2 * pi();
}
elseif ($lon > pi())
{
$lon -= 2 * pi();
}
$xlat = $L2 * $degreesPerRadian;
$xlon = $lon * $degreesPerRadian;
return array('lon' => $xlon, 'lat' => $xlat);
}
/*
* copy the sign
*/
private static function copysign($x, $y)
{
return ((($y) < 0.0) ? - abs($x) : abs($x));
}
/*
* not greater than 1
*/
private static function ngt1($x)
{
return (abs($x) > 1.0 ? self::copysign(1.0 , $x) : ($x));
}
/*
* haversine
*/
private static function hav($x)
{
return ((1.0 - cos($x)) * 0.5);
}
/*
* arc haversine
*/
private static function ahav($x)
{
return acos(self::ngt1(1.0 - ($x * 2.0)));
}
/*
* secant
*/
private static function sec($x)
{
return (1.0 / cos($x));
}
/*
* cosecant
*/
private static function csc($x)
{
return (1.0 / sin($x));
}
}

Here's a C implementation that I found, should be fairly straightforward to translate to PHP:
#define KmPerDegree 111.12000071117
#define DegreesPerKm (1.0/KmPerDegree)
#define PI M_PI
#define TwoPI (M_PI+M_PI)
#define HalfPI M_PI_2
#define RadiansPerDegree (PI/180.0)
#define DegreesPerRadian (180.0/PI)
#define copysign(x,y) (((y)<0.0)?-fabs(x):fabs(x))
#define NGT1(x) (fabs(x)>1.0?copysign(1.0,x):(x))
#define ArcCos(x) (fabs(x)>1?quiet_nan():acos(x))
#define hav(x) ((1.0-cos(x))*0.5) /* haversine */
#define ahav(x) (ArcCos(NGT1(1.0-((x)*2.0)))) /* arc haversine */
#define sec(x) (1.0/cos(x)) /* secant */
#define csc(x) (1.0/sin(x)) /* cosecant */
/*
** GreatCirclePos() --
**
** Compute ending position from course and great-circle distance.
**
** Given a starting latitude (decimal), the initial great-circle
** course and a distance along the course track, compute the ending
** position (decimal latitude and longitude).
** This is the inverse function to GreatCircleDist).
*/
void
GreatCirclePos(dist, course, slt, slg, xlt, xlg)
double dist; /* -> great-circle distance (km) */
double course; /* -> initial great-circle course (degrees) */
double slt; /* -> starting decimal latitude (-S) */
double slg; /* -> starting decimal longitude(-W) */
double *xlt; /* <- ending decimal latitude (-S) */
double *xlg; /* <- ending decimal longitude(-W) */
{
double c, d, dLo, L1, L2, coL1, coL2, l;
if (dist > KmPerDegree*180.0) {
course -= 180.0;
if (course < 0.0) course += 360.0;
dist = KmPerDegree*360.0-dist;
}
if (course > 180.0) course -= 360.0;
c = course*RadiansPerDegree;
d = dist*DegreesPerKm*RadiansPerDegree;
L1 = slt*RadiansPerDegree;
slg *= RadiansPerDegree;
coL1 = (90.0-slt)*RadiansPerDegree;
coL2 = ahav(hav(c)/(sec(L1)*csc(d))+hav(d-coL1));
L2 = HalfPI-coL2;
l = L2-L1;
if ((dLo=(cos(L1)*cos(L2))) != 0.0)
dLo = ahav((hav(d)-hav(l))/dLo);
if (c < 0.0) dLo = -dLo;
slg += dLo;
if (slg < -PI)
slg += TwoPI;
else if (slg > PI)
slg -= TwoPI;
*xlt = L2*DegreesPerRadian;
*xlg = slg*DegreesPerRadian;
} /* GreatCirclePos() */
Source: http://sam.ucsd.edu/sio210/propseawater/ppsw_c/gcdist.c

It would be harder to back out the Haversine fomula, then generate your own, I would think.
First the angle generated from the Earth core by traveling a "straight" line on the surface (you think it is straight, but it is curving).
Angle in Radians = Arc Length / radius.
Angle = ArcLen/6371 km
Latitude should be easy, just the "vertical" (north/south) component of your angle.
Lat1 + Cos(bearing) * Angle
Longitude divisions vary by latitude. So that becomes harder. You would use:
Sin(bearing) * Angle (with East defined as negative) to find the angle in longitude direction, but converting back to actual longitude at that latitude would be more difficult.

See the section Destination point given distance and bearing from start point at this website: http://www.movable-type.co.uk/scripts/latlong.html

Related

Calculate distance between GPS points by coordinates

I'm having some trouble computing the distance between two GPS points by their coordinates.
point a
x = 7,2562
y = 47,7434599999999
point b
x = 7,21978
y = 47,73836
I used the Haversine formula as described here. The result I get is 4.09 km.
However, locating those points on a map using a tool like this, I can measure a distance of 2.8 km
Several other formulas I tried also return a result around 4 km.
Any ideas what I would be missing ?
I think is because u are using the function in miles, in Kms you can use something like that:
public static function distance(
array $from,
array $to
) {
if (empty($from['lat']) || empty($to['lat'])) {
return $to['distance'];
}
$latitude1 = (float) $from['lat'];
$latitude2 = (float) $to['lat'];
$longitude1 = (float) $from['lng'];
$longitude2 = (float) $to['lng'];
$theta = $longitude1 - $longitude2;
$distance = (sin(deg2rad($latitude1)) * sin(deg2rad($latitude2)))
+ (cos(deg2rad($latitude1)) * cos(deg2rad($latitude2)) * cos(deg2rad($theta)))
;
$distance = acos($distance);
$distance = rad2deg($distance);
$distance = $distance * 60 * 1.1515;
$distance = (is_nan($distance)) ? 0 : $distance * 1.609344;
return $distance;
}
As pointed out by Roland Starke in the comments, the problem was the order of the coordinates. (7, 47 not 47, 7)

How to find intersection points between two circles?

We have two points (centers of two circles) and their radius in meters, those radius make the circle. We need to find intersection points. For example we have lat1 = 55.685025, lng1 = 21.118995, r1 = 150 and lat2 = 55.682393, lng2 = 21.121387, r2 = 250. Below you can find our current formula:
// Find a and h.
$a = ($circle_1_r * $circle_1_r - $circle_2_r * $circle_2_r + $distance * $distance) / (2 * $distance);
$h = sqrt($circle_1_r * $circle_1_r - $a * $a);
// Find P2.
$circle_3_x = $circle_1_x + $a * ($circle_2_x - $circle_1_x) / $distance;
$circle_3_y = $circle_1_y + $a * ($circle_2_y - $circle_1_y) / $distance;
// Get the points P3.
$intersection_1 = $this->newLatLngPoint(
($circle_3_x + $h * ($circle_2_y - $circle_1_y) / $distance),
($circle_3_y - $h * ($circle_2_x - $circle_1_x) / $distance)
);
$intersection_2 = $this->newLatLngPoint(
($circle_3_x - $h * ($circle_2_y - $circle_1_y) / $distance),
($circle_3_y + $h * ($circle_2_x - $circle_1_x) / $distance)
);
We find such intersection points (yellow markers), however those locations doesn't match in real world.
Someone, can help to find where the problem is and how to sort it ?
P.S.
Does the altitude (Height above mean sea level) affect the final result? I don't use it but may be should?

Calculate all coordinates to x decimal places between two Lat/Long coordinates

How can I calculate every Lat/Long coordinates between two Lat/Long coordinates in PHP?
Lets say I have coordinates A:
(39.126331, -84.113288)
and coordinates B:
(39.526331, -84.213288)
How would I calculate every possible coordinates between those two Lat/Long coordinates (in a direct line) up to five decimal places (e.g. 39.12633, -84.11328) and get list of coordinates between the two?
In addition, I have another set of coordinates (Coordinates C) that are slightly off and not on the track of coordinates between A and B.
How could I calculate the distance between coordinates C and the closest coordinates between A and B?
You can compute a voronoi diagram from all the lat lon pairs and then look for adjacent cell. Also note that lat lon are angles and not world coordinate or cartesian coordinates. You can download my PHP class voronoi diagram # phpclasses.org.
Here is what solved this for me,
function point_to_line_segment_distance($startX,$startY, $endX,$endY, $pointX,$pointY)
{
$r_numerator = ($pointX - $startX) * ($endX - $startX) + ($pointY - $startY) * ($endY - $startY);
$r_denominator = ($endX - $startX) * ($endX - $startX) + ($endY - $startY) * ($endY - $startY);
$r = $r_numerator / $r_denominator;
$px = $startX + $r * ($endX - $startX);
$py = $startY + $r * ($endY - $startY);
$closest_point_on_segment_X = $px;
$closest_point_on_segment_Y = $py;
$distance = user_bomb_distance_calc($closest_point_on_segment_X, $closest_point_on_segment_Y, $pointX, $pointY);
return array($distance, $closest_point_on_segment_X, $closest_point_on_segment_Y);
}
function user_bomb_distance_calc($uLat , $uLong , $bLat , $bLong)
{
$earthRadius = 6371; #km
$dLat = deg2rad((double)$bLat - (double) $uLat);
$dlong = deg2rad((double)$bLong - (double) $uLong);
$a = sin($dLat / 2 ) * sin($dLat / 2 ) + cos(deg2rad((double)$uLat)) * cos(deg2rad((double)$bLat)) * sin($dlong / 2) * sin($dlong / 2);
$c = 2 * atan2(sqrt($a), sqrt(1 - $a));
$distance = $earthRadius * $c;
$meter = 1000; //convert to meter 1KM = 1000M
return intval( $distance * $meter ) ;
}

getting latitude and longitude of user and calculate distance from two different latitude and longitude values [duplicate]

How do I calculate the distance between two points specified by latitude and longitude?
For clarification, I'd like the distance in kilometers; the points use the WGS84 system and I'd like to understand the relative accuracies of the approaches available.
This link might be helpful to you, as it details the use of the Haversine formula to calculate the distance.
Excerpt:
This script [in Javascript] calculates great-circle distances between the two points –
that is, the shortest distance over the earth’s surface – using the
‘Haversine’ formula.
function getDistanceFromLatLonInKm(lat1,lon1,lat2,lon2) {
var R = 6371; // Radius of the earth in km
var dLat = deg2rad(lat2-lat1); // deg2rad below
var dLon = deg2rad(lon2-lon1);
var a =
Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) *
Math.sin(dLon/2) * Math.sin(dLon/2)
;
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c; // Distance in km
return d;
}
function deg2rad(deg) {
return deg * (Math.PI/180)
}
I needed to calculate a lot of distances between the points for my project, so I went ahead and tried to optimize the code, I have found here. On average in different browsers my new implementation runs 2 times faster than the most upvoted answer.
function distance(lat1, lon1, lat2, lon2) {
var p = 0.017453292519943295; // Math.PI / 180
var c = Math.cos;
var a = 0.5 - c((lat2 - lat1) * p)/2 +
c(lat1 * p) * c(lat2 * p) *
(1 - c((lon2 - lon1) * p))/2;
return 12742 * Math.asin(Math.sqrt(a)); // 2 * R; R = 6371 km
}
You can play with my jsPerf and see the results here.
Recently I needed to do the same in python, so here is a python implementation:
from math import cos, asin, sqrt, pi
def distance(lat1, lon1, lat2, lon2):
p = pi/180
a = 0.5 - cos((lat2-lat1)*p)/2 + cos(lat1*p) * cos(lat2*p) * (1-cos((lon2-lon1)*p))/2
return 12742 * asin(sqrt(a)) #2*R*asin...
And for the sake of completeness: Haversine on Wikipedia.
Here is a C# Implementation:
static class DistanceAlgorithm
{
const double PIx = 3.141592653589793;
const double RADIUS = 6378.16;
/// <summary>
/// Convert degrees to Radians
/// </summary>
/// <param name="x">Degrees</param>
/// <returns>The equivalent in radians</returns>
public static double Radians(double x)
{
return x * PIx / 180;
}
/// <summary>
/// Calculate the distance between two places.
/// </summary>
/// <param name="lon1"></param>
/// <param name="lat1"></param>
/// <param name="lon2"></param>
/// <param name="lat2"></param>
/// <returns></returns>
public static double DistanceBetweenPlaces(
double lon1,
double lat1,
double lon2,
double lat2)
{
double dlon = Radians(lon2 - lon1);
double dlat = Radians(lat2 - lat1);
double a = (Math.Sin(dlat / 2) * Math.Sin(dlat / 2)) + Math.Cos(Radians(lat1)) * Math.Cos(Radians(lat2)) * (Math.Sin(dlon / 2) * Math.Sin(dlon / 2));
double angle = 2 * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1 - a));
return angle * RADIUS;
}
}
Here is a java implementation of the Haversine formula.
public final static double AVERAGE_RADIUS_OF_EARTH_KM = 6371;
public int calculateDistanceInKilometer(double userLat, double userLng,
double venueLat, double venueLng) {
double latDistance = Math.toRadians(userLat - venueLat);
double lngDistance = Math.toRadians(userLng - venueLng);
double a = Math.sin(latDistance / 2) * Math.sin(latDistance / 2)
+ Math.cos(Math.toRadians(userLat)) * Math.cos(Math.toRadians(venueLat))
* Math.sin(lngDistance / 2) * Math.sin(lngDistance / 2);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
return (int) (Math.round(AVERAGE_RADIUS_OF_EARTH_KM * c));
}
Note that here we are rounding the answer to the nearest km.
Thanks very much for all this. I used the following code in my Objective-C iPhone app:
const double PIx = 3.141592653589793;
const double RADIO = 6371; // Mean radius of Earth in Km
double convertToRadians(double val) {
return val * PIx / 180;
}
-(double)kilometresBetweenPlace1:(CLLocationCoordinate2D) place1 andPlace2:(CLLocationCoordinate2D) place2 {
double dlon = convertToRadians(place2.longitude - place1.longitude);
double dlat = convertToRadians(place2.latitude - place1.latitude);
double a = ( pow(sin(dlat / 2), 2) + cos(convertToRadians(place1.latitude))) * cos(convertToRadians(place2.latitude)) * pow(sin(dlon / 2), 2);
double angle = 2 * asin(sqrt(a));
return angle * RADIO;
}
Latitude and Longitude are in decimal. I didn't use min() for the asin() call as the distances that I'm using are so small that they don't require it.
It gave incorrect answers until I passed in the values in Radians - now it's pretty much the same as the values obtained from Apple's Map app :-)
Extra update:
If you are using iOS4 or later then Apple provide some methods to do this so the same functionality would be achieved with:
-(double)kilometresBetweenPlace1:(CLLocationCoordinate2D) place1 andPlace2:(CLLocationCoordinate2D) place2 {
MKMapPoint start, finish;
start = MKMapPointForCoordinate(place1);
finish = MKMapPointForCoordinate(place2);
return MKMetersBetweenMapPoints(start, finish) / 1000;
}
This is a simple PHP function that will give a very reasonable approximation (under +/-1% error margin).
<?php
function distance($lat1, $lon1, $lat2, $lon2) {
$pi80 = M_PI / 180;
$lat1 *= $pi80;
$lon1 *= $pi80;
$lat2 *= $pi80;
$lon2 *= $pi80;
$r = 6372.797; // mean radius of Earth in km
$dlat = $lat2 - $lat1;
$dlon = $lon2 - $lon1;
$a = sin($dlat / 2) * sin($dlat / 2) + cos($lat1) * cos($lat2) * sin($dlon / 2) * sin($dlon / 2);
$c = 2 * atan2(sqrt($a), sqrt(1 - $a));
$km = $r * $c;
//echo '<br/>'.$km;
return $km;
}
?>
As said before; the earth is NOT a sphere. It is like an old, old baseball that Mark McGwire decided to practice with - it is full of dents and bumps. The simpler calculations (like this) treat it like a sphere.
Different methods may be more or less precise according to where you are on this irregular ovoid AND how far apart your points are (the closer they are the smaller the absolute error margin). The more precise your expectation, the more complex the math.
For more info: wikipedia geographic distance
I post here my working example.
List all points in table having distance between a designated point (we use a random point - lat:45.20327, long:23.7806) less than 50 KM, with latitude & longitude, in MySQL (the table fields are coord_lat and coord_long):
List all having DISTANCE<50, in Kilometres (considered Earth radius 6371 KM):
SELECT denumire, (6371 * acos( cos( radians(45.20327) ) * cos( radians( coord_lat ) ) * cos( radians( 23.7806 ) - radians(coord_long) ) + sin( radians(45.20327) ) * sin( radians(coord_lat) ) )) AS distanta
FROM obiective
WHERE coord_lat<>''
AND coord_long<>''
HAVING distanta<50
ORDER BY distanta desc
The above example was tested in MySQL 5.0.95 and 5.5.16 (Linux).
In the other answers an implementation in r is missing.
Calculating the distance between two point is quite straightforward with the distm function from the geosphere package:
distm(p1, p2, fun = distHaversine)
where:
p1 = longitude/latitude for point(s)
p2 = longitude/latitude for point(s)
# type of distance calculation
fun = distCosine / distHaversine / distVincentySphere / distVincentyEllipsoid
As the earth is not perfectly spherical, the Vincenty formula for ellipsoids is probably the best way to calculate distances. Thus in the geosphere package you use then:
distm(p1, p2, fun = distVincentyEllipsoid)
Off course you don't necessarily have to use geosphere package, you can also calculate the distance in base R with a function:
hav.dist <- function(long1, lat1, long2, lat2) {
R <- 6371
diff.long <- (long2 - long1)
diff.lat <- (lat2 - lat1)
a <- sin(diff.lat/2)^2 + cos(lat1) * cos(lat2) * sin(diff.long/2)^2
b <- 2 * asin(pmin(1, sqrt(a)))
d = R * b
return(d)
}
The haversine is definitely a good formula for probably most cases, other answers already include it so I am not going to take the space. But it is important to note that no matter what formula is used (yes not just one). Because of the huge range of accuracy possible as well as the computation time required. The choice of formula requires a bit more thought than a simple no brainer answer.
This posting from a person at nasa, is the best one I found at discussing the options
http://www.cs.nyu.edu/visual/home/proj/tiger/gisfaq.html
For example, if you are just sorting rows by distance in a 100 miles radius. The flat earth formula will be much faster than the haversine.
HalfPi = 1.5707963;
R = 3956; /* the radius gives you the measurement unit*/
a = HalfPi - latoriginrad;
b = HalfPi - latdestrad;
u = a * a + b * b;
v = - 2 * a * b * cos(longdestrad - longoriginrad);
c = sqrt(abs(u + v));
return R * c;
Notice there is just one cosine and one square root. Vs 9 of them on the Haversine formula.
There could be a simpler solution, and more correct: The perimeter of earth is 40,000Km at the equator, about 37,000 on Greenwich (or any longitude) cycle. Thus:
pythagoras = function (lat1, lon1, lat2, lon2) {
function sqr(x) {return x * x;}
function cosDeg(x) {return Math.cos(x * Math.PI / 180.0);}
var earthCyclePerimeter = 40000000.0 * cosDeg((lat1 + lat2) / 2.0);
var dx = (lon1 - lon2) * earthCyclePerimeter / 360.0;
var dy = 37000000.0 * (lat1 - lat2) / 360.0;
return Math.sqrt(sqr(dx) + sqr(dy));
};
I agree that it should be fine-tuned as, I myself said that it's an ellipsoid, so the radius to be multiplied by the cosine varies. But it's a bit more accurate. Compared with Google Maps and it did reduce the error significantly.
pip install haversine
Python implementation
Origin is the center of the contiguous United States.
from haversine import haversine, Unit
origin = (39.50, 98.35)
paris = (48.8567, 2.3508)
haversine(origin, paris, unit=Unit.MILES)
To get the answer in kilometers simply set unit=Unit.KILOMETERS (that's the default).
There is some errors in the code provided, I've fixed it below.
All the above answers assumes the earth is a sphere. However, a more accurate approximation would be that of an oblate spheroid.
a= 6378.137#equitorial radius in km
b= 6356.752#polar radius in km
def Distance(lat1, lons1, lat2, lons2):
lat1=math.radians(lat1)
lons1=math.radians(lons1)
R1=(((((a**2)*math.cos(lat1))**2)+(((b**2)*math.sin(lat1))**2))/((a*math.cos(lat1))**2+(b*math.sin(lat1))**2))**0.5 #radius of earth at lat1
x1=R1*math.cos(lat1)*math.cos(lons1)
y1=R1*math.cos(lat1)*math.sin(lons1)
z1=R1*math.sin(lat1)
lat2=math.radians(lat2)
lons2=math.radians(lons2)
R2=(((((a**2)*math.cos(lat2))**2)+(((b**2)*math.sin(lat2))**2))/((a*math.cos(lat2))**2+(b*math.sin(lat2))**2))**0.5 #radius of earth at lat2
x2=R2*math.cos(lat2)*math.cos(lons2)
y2=R2*math.cos(lat2)*math.sin(lons2)
z2=R2*math.sin(lat2)
return ((x1-x2)**2+(y1-y2)**2+(z1-z2)**2)**0.5
I don't like adding yet another answer, but the Google maps API v.3 has spherical geometry (and more). After converting your WGS84 to decimal degrees you can do this:
<script src="http://maps.google.com/maps/api/js?sensor=false&libraries=geometry" type="text/javascript"></script>
distance = google.maps.geometry.spherical.computeDistanceBetween(
new google.maps.LatLng(fromLat, fromLng),
new google.maps.LatLng(toLat, toLng));
No word about how accurate Google's calculations are or even what model is used (though it does say "spherical" rather than "geoid". By the way, the "straight line" distance will obviously be different from the distance if one travels on the surface of the earth which is what everyone seems to be presuming.
You can use the build in CLLocationDistance to calculate this:
CLLocation *location1 = [[CLLocation alloc] initWithLatitude:latitude1 longitude:longitude1];
CLLocation *location2 = [[CLLocation alloc] initWithLatitude:latitude2 longitude:longitude2];
[self distanceInMetersFromLocation:location1 toLocation:location2]
- (int)distanceInMetersFromLocation:(CLLocation*)location1 toLocation:(CLLocation*)location2 {
CLLocationDistance distanceInMeters = [location1 distanceFromLocation:location2];
return distanceInMeters;
}
In your case if you want kilometers just divide by 1000.
As pointed out, an accurate calculation should take into account that the earth is not a perfect sphere. Here are some comparisons of the various algorithms offered here:
geoDistance(50,5,58,3)
Haversine: 899 km
Maymenn: 833 km
Keerthana: 897 km
google.maps.geometry.spherical.computeDistanceBetween(): 900 km
geoDistance(50,5,-58,-3)
Haversine: 12030 km
Maymenn: 11135 km
Keerthana: 10310 km
google.maps.geometry.spherical.computeDistanceBetween(): 12044 km
geoDistance(.05,.005,.058,.003)
Haversine: 0.9169 km
Maymenn: 0.851723 km
Keerthana: 0.917964 km
google.maps.geometry.spherical.computeDistanceBetween(): 0.917964 km
geoDistance(.05,80,.058,80.3)
Haversine: 33.37 km
Maymenn: 33.34 km
Keerthana: 33.40767 km
google.maps.geometry.spherical.computeDistanceBetween(): 33.40770 km
Over small distances, Keerthana's algorithm does seem to coincide with that of Google Maps. Google Maps does not seem to follow any simple algorithm, suggesting that it may be the most accurate method here.
Anyway, here is a Javascript implementation of Keerthana's algorithm:
function geoDistance(lat1, lng1, lat2, lng2){
const a = 6378.137; // equitorial radius in km
const b = 6356.752; // polar radius in km
var sq = x => (x*x);
var sqr = x => Math.sqrt(x);
var cos = x => Math.cos(x);
var sin = x => Math.sin(x);
var radius = lat => sqr((sq(a*a*cos(lat))+sq(b*b*sin(lat)))/(sq(a*cos(lat))+sq(b*sin(lat))));
lat1 = lat1 * Math.PI / 180;
lng1 = lng1 * Math.PI / 180;
lat2 = lat2 * Math.PI / 180;
lng2 = lng2 * Math.PI / 180;
var R1 = radius(lat1);
var x1 = R1*cos(lat1)*cos(lng1);
var y1 = R1*cos(lat1)*sin(lng1);
var z1 = R1*sin(lat1);
var R2 = radius(lat2);
var x2 = R2*cos(lat2)*cos(lng2);
var y2 = R2*cos(lat2)*sin(lng2);
var z2 = R2*sin(lat2);
return sqr(sq(x1-x2)+sq(y1-y2)+sq(z1-z2));
}
Here is a typescript implementation of the Haversine formula
static getDistanceFromLatLonInKm(lat1: number, lon1: number, lat2: number, lon2: number): number {
var deg2Rad = deg => {
return deg * Math.PI / 180;
}
var r = 6371; // Radius of the earth in km
var dLat = deg2Rad(lat2 - lat1);
var dLon = deg2Rad(lon2 - lon1);
var a =
Math.sin(dLat / 2) * Math.sin(dLat / 2) +
Math.cos(deg2Rad(lat1)) * Math.cos(deg2Rad(lat2)) *
Math.sin(dLon / 2) * Math.sin(dLon / 2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
var d = r * c; // Distance in km
return d;
}
Here is the SQL Implementation to calculate the distance in km,
SELECT UserId, ( 3959 * acos( cos( radians( your latitude here ) ) * cos( radians(latitude) ) *
cos( radians(longitude) - radians( your longitude here ) ) + sin( radians( your latitude here ) ) *
sin( radians(latitude) ) ) ) AS distance FROM user HAVING
distance < 5 ORDER BY distance LIMIT 0 , 5;
For further details in the implementation by programming langugage, you can just go through the php script given here
This script [in PHP] calculates distances between the two points.
public static function getDistanceOfTwoPoints($source, $dest, $unit='K') {
$lat1 = $source[0];
$lon1 = $source[1];
$lat2 = $dest[0];
$lon2 = $dest[1];
$theta = $lon1 - $lon2;
$dist = sin(deg2rad($lat1)) * sin(deg2rad($lat2)) + cos(deg2rad($lat1)) * cos(deg2rad($lat2)) * cos(deg2rad($theta));
$dist = acos($dist);
$dist = rad2deg($dist);
$miles = $dist * 60 * 1.1515;
$unit = strtoupper($unit);
if ($unit == "K") {
return ($miles * 1.609344);
}
else if ($unit == "M")
{
return ($miles * 1.609344 * 1000);
}
else if ($unit == "N") {
return ($miles * 0.8684);
}
else {
return $miles;
}
}
here is an example in postgres sql (in km, for miles version, replace 1.609344 by 0.8684 version)
CREATE OR REPLACE FUNCTION public.geodistance(alat float, alng float, blat
float, blng float)
RETURNS float AS
$BODY$
DECLARE
v_distance float;
BEGIN
v_distance = asin( sqrt(
sin(radians(blat-alat)/2)^2
+ (
(sin(radians(blng-alng)/2)^2) *
cos(radians(alat)) *
cos(radians(blat))
)
)
) * cast('7926.3352' as float) * cast('1.609344' as float) ;
RETURN v_distance;
END
$BODY$
language plpgsql VOLATILE SECURITY DEFINER;
alter function geodistance(alat float, alng float, blat float, blng float)
owner to postgres;
Java implementation in according Haversine formula
double calculateDistance(double latPoint1, double lngPoint1,
double latPoint2, double lngPoint2) {
if(latPoint1 == latPoint2 && lngPoint1 == lngPoint2) {
return 0d;
}
final double EARTH_RADIUS = 6371.0; //km value;
//converting to radians
latPoint1 = Math.toRadians(latPoint1);
lngPoint1 = Math.toRadians(lngPoint1);
latPoint2 = Math.toRadians(latPoint2);
lngPoint2 = Math.toRadians(lngPoint2);
double distance = Math.pow(Math.sin((latPoint2 - latPoint1) / 2.0), 2)
+ Math.cos(latPoint1) * Math.cos(latPoint2)
* Math.pow(Math.sin((lngPoint2 - lngPoint1) / 2.0), 2);
distance = 2.0 * EARTH_RADIUS * Math.asin(Math.sqrt(distance));
return distance; //km value
}
I made a custom function in R to calculate haversine distance(km) between two spatial points using functions available in R base package.
custom_hav_dist <- function(lat1, lon1, lat2, lon2) {
R <- 6371
Radian_factor <- 0.0174533
lat_1 <- (90-lat1)*Radian_factor
lat_2 <- (90-lat2)*Radian_factor
diff_long <-(lon1-lon2)*Radian_factor
distance_in_km <- 6371*acos((cos(lat_1)*cos(lat_2))+
(sin(lat_1)*sin(lat_2)*cos(diff_long)))
rm(lat1, lon1, lat2, lon2)
return(distance_in_km)
}
Sample output
custom_hav_dist(50.31,19.08,54.14,19.39)
[1] 426.3987
PS: To calculate distances in miles, substitute R in function (6371) with 3958.756 (and for nautical miles, use 3440.065).
To calculate the distance between two points on a sphere you need to do the Great Circle calculation.
There are a number of C/C++ libraries to help with map projection at MapTools if you need to reproject your distances to a flat surface. To do this you will need the projection string of the various coordinate systems.
You may also find MapWindow a useful tool to visualise the points. Also as its open source its a useful guide to how to use the proj.dll library, which appears to be the core open source projection library.
Here is my java implementation for calculation distance via decimal degrees after some search. I used mean radius of world (from wikipedia) in km. İf you want result miles then use world radius in miles.
public static double distanceLatLong2(double lat1, double lng1, double lat2, double lng2)
{
double earthRadius = 6371.0d; // KM: use mile here if you want mile result
double dLat = toRadian(lat2 - lat1);
double dLng = toRadian(lng2 - lng1);
double a = Math.pow(Math.sin(dLat/2), 2) +
Math.cos(toRadian(lat1)) * Math.cos(toRadian(lat2)) *
Math.pow(Math.sin(dLng/2), 2);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
return earthRadius * c; // returns result kilometers
}
public static double toRadian(double degrees)
{
return (degrees * Math.PI) / 180.0d;
}
Here's the accepted answer implementation ported to Java in case anyone needs it.
package com.project529.garage.util;
/**
* Mean radius.
*/
private static double EARTH_RADIUS = 6371;
/**
* Returns the distance between two sets of latitudes and longitudes in meters.
* <p/>
* Based from the following JavaScript SO answer:
* http://stackoverflow.com/questions/27928/calculate-distance-between-two-latitude-longitude-points-haversine-formula,
* which is based on https://en.wikipedia.org/wiki/Haversine_formula (error rate: ~0.55%).
*/
public double getDistanceBetween(double lat1, double lon1, double lat2, double lon2) {
double dLat = toRadians(lat2 - lat1);
double dLon = toRadians(lon2 - lon1);
double a = Math.sin(dLat / 2) * Math.sin(dLat / 2) +
Math.cos(toRadians(lat1)) * Math.cos(toRadians(lat2)) *
Math.sin(dLon / 2) * Math.sin(dLon / 2);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
double d = EARTH_RADIUS * c;
return d;
}
public double toRadians(double degrees) {
return degrees * (Math.PI / 180);
}
For those looking for an Excel formula based on WGS-84 & GRS-80 standards:
=ACOS(COS(RADIANS(90-Lat1))*COS(RADIANS(90-Lat2))+SIN(RADIANS(90-Lat1))*SIN(RADIANS(90-Lat2))*COS(RADIANS(Long1-Long2)))*6371
Source
there is a good example in here to calculate distance with PHP http://www.geodatasource.com/developers/php :
function distance($lat1, $lon1, $lat2, $lon2, $unit) {
$theta = $lon1 - $lon2;
$dist = sin(deg2rad($lat1)) * sin(deg2rad($lat2)) + cos(deg2rad($lat1)) * cos(deg2rad($lat2)) * cos(deg2rad($theta));
$dist = acos($dist);
$dist = rad2deg($dist);
$miles = $dist * 60 * 1.1515;
$unit = strtoupper($unit);
if ($unit == "K") {
return ($miles * 1.609344);
} else if ($unit == "N") {
return ($miles * 0.8684);
} else {
return $miles;
}
}
Here is the implementation VB.NET, this implementation will give you the result in KM or Miles based on an Enum value you pass.
Public Enum DistanceType
Miles
KiloMeters
End Enum
Public Structure Position
Public Latitude As Double
Public Longitude As Double
End Structure
Public Class Haversine
Public Function Distance(Pos1 As Position,
Pos2 As Position,
DistType As DistanceType) As Double
Dim R As Double = If((DistType = DistanceType.Miles), 3960, 6371)
Dim dLat As Double = Me.toRadian(Pos2.Latitude - Pos1.Latitude)
Dim dLon As Double = Me.toRadian(Pos2.Longitude - Pos1.Longitude)
Dim a As Double = Math.Sin(dLat / 2) * Math.Sin(dLat / 2) + Math.Cos(Me.toRadian(Pos1.Latitude)) * Math.Cos(Me.toRadian(Pos2.Latitude)) * Math.Sin(dLon / 2) * Math.Sin(dLon / 2)
Dim c As Double = 2 * Math.Asin(Math.Min(1, Math.Sqrt(a)))
Dim result As Double = R * c
Return result
End Function
Private Function toRadian(val As Double) As Double
Return (Math.PI / 180) * val
End Function
End Class
I condensed the computation down by simplifying the formula.
Here it is in Ruby:
include Math
earth_radius_mi = 3959
radians = lambda { |deg| deg * PI / 180 }
coord_radians = lambda { |c| { :lat => radians[c[:lat]], :lng => radians[c[:lng]] } }
# from/to = { :lat => (latitude_in_degrees), :lng => (longitude_in_degrees) }
def haversine_distance(from, to)
from, to = coord_radians[from], coord_radians[to]
cosines_product = cos(to[:lat]) * cos(from[:lat]) * cos(from[:lng] - to[:lng])
sines_product = sin(to[:lat]) * sin(from[:lat])
return earth_radius_mi * acos(cosines_product + sines_product)
end
function getDistanceFromLatLonInKm(lat1,lon1,lat2,lon2,units) {
var R = 6371; // Radius of the earth in km
var dLat = deg2rad(lat2-lat1); // deg2rad below
var dLon = deg2rad(lon2-lon1);
var a =
Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) *
Math.sin(dLon/2) * Math.sin(dLon/2)
;
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c;
var miles = d / 1.609344;
if ( units == 'km' ) {
return d;
} else {
return miles;
}}
Chuck's solution, valid for miles also.
In Mysql use the following function pass the parameters as using POINT(LONG,LAT)
CREATE FUNCTION `distance`(a POINT, b POINT)
RETURNS double
DETERMINISTIC
BEGIN
RETURN
GLength( LineString(( PointFromWKB(a)), (PointFromWKB(b)))) * 100000; -- To Make the distance in meters
END;

PHP returning NaN

I have a function that calculates the distance between two GPS coordinates. I then get all the coordinates from the database and loop through them all to get the distance between the current one and the previous one, then add that to an array for the specific GPS device. For some reason it is return NaN. I have tried casting it as a double, an int, and rounding the number.
Here is my PHP code:
function distance($lat1, $lon1, $lat2, $lon2) {
$lat1 = round($lat1, 3);
$lon1 = round($lon1, 3);
$lat2 = round($lat2, 3);
$lon2 = round($lon2, 3);
$theta = $lon1 - $lon2;
$dist = sin(deg2rad($lat1)) * sin(deg2rad($lat2)) + cos(deg2rad($lat1)) * cos(deg2rad($lat2)) * cos(deg2rad($theta));
$dist = acos($dist);
$dist = rad2deg($dist);
$miles = $dist * 60 * 1.1515;
if($miles < 0) $miles = $miles * -1;
return ($miles * 1.609344);
}
$this->db->query("SELECT * FROM `gps_loc` WHERE `imeiN`='" . $sql . "' AND `updatetime`>=$timeLimit ORDER BY `_id` DESC");
$dist = array();
$dist2 = array();
while($row = $this->db->getResults()) {
$dist2[$row['imeiN']] = 0;
$dist[$row['imeiN']][]["lat"] = $row['lat'];
$dist[$row['imeiN']][count($dist[$row['imeiN']]) - 1]["lng"] = $row['lon'];
}
foreach($dist as $key=>$d) {
$a = 0;
$b = 0;
foreach($dist[$key] as $n) {
if($a > 0) {
$dist2[$key] += $this->distance($n['lat'], $n['lng'], $dist[$key][$a - 1]['lat'], $dist[$key][$a - 1]['lng']);
}
$a++;
}
}
echo json_encode($dist2);
The range of sin() and cos() is between -1 and 1. Therefore in your first calculation of $dist the result range is -2 to 2. You then pass this to acos(), whose argument must be between -1 and 1. Thus acos(2) for example gives NaN. Everything else from there gives NaN as well.
I'm not sure what the formula should be exactly, but that's where your NaN is coming from. Double-check your trigonometry.
The algo will produce NaN if points are too close to each other. In that case $dist gets value 1. acos(1) is NaN. All subsequent calculations produce NaN too.
You round coordinates as the first step, so it makes more probable that the values become equal after rounding, and produce NaN.
The values you are pulling from the database may be strings, which would cause this issue.
You may also want to check the issues that Kolink raised in his post.
Is that the spherical law of cosines you're using? I'd switch to the Haversine formula:
function distance($lat1, $lon1, $lat2, $lon2)
{
$radius = 3959; //approximate mean radius of the earth in miles, can change to any unit of measurement, will get results back in that unit
$delta_Rad_Lat = deg2rad($lat2 - $lat1); //Latitude delta in radians
$delta_Rad_Lon = deg2rad($lon2 - $lon1); //Longitude delta in radians
$rad_Lat1 = deg2rad($lat1); //Latitude 1 in radians
$rad_Lat2 = deg2rad($lat2); //Latitude 2 in radians
$sq_Half_Chord = sin($delta_Rad_Lat / 2) * sin($delta_Rad_Lat / 2) + cos($rad_Lat1) * cos($rad_Lat2) * sin($delta_Rad_Lon / 2) * sin($delta_Rad_Lon / 2); //Square of half the chord length
$ang_Dist_Rad = 2 * asin(sqrt($sq_Half_Chord)); //Angular distance in radians
$distance = $radius * $ang_Dist_Rad;
return $distance;
}
You should be able to change the earth's radius to any form of measurement from radius in light years to radius in nanometers and get the proper number back out for the unit used.
Thanks for all the responses here - as a result I made a function which combines to computations and tests for NaN in each, if both are not NaN - it averages the calculation, if one is NaN and the other is not - it uses the one that's valid and gives error report for the coordinates that failed one of the calculation:
function distance_slc($lat1, $lon1, $lat2, $lon2) {
$earth_radius = 3960.00; # in miles
$distance = sin(deg2rad($lat1)) * sin(deg2rad($lat2)) + cos(deg2rad($lat1)) * cos(deg2rad($lat2)) * cos(deg2rad($lon2-$lon1)) ;
$distance = acos($distance);
$distance = rad2deg($distance);
$distance = $distance * 60 * 1.1515;
$distance1 = round($distance, 4);
// use a second method as well and average
$radius = 3959; //approximate mean radius of the earth in miles, can change to any unit of measurement, will get results back in that unit
$delta_Rad_Lat = deg2rad($lat2 - $lat1); //Latitude delta in radians
$delta_Rad_Lon = deg2rad($lon2 - $lon1); //Longitude delta in radians
$rad_Lat1 = deg2rad($lat1); //Latitude 1 in radians
$rad_Lat2 = deg2rad($lat2); //Latitude 2 in radians
$sq_Half_Chord = sin($delta_Rad_Lat / 2) * sin($delta_Rad_Lat / 2) + cos($rad_Lat1) * cos($rad_Lat2) * sin($delta_Rad_Lon / 2) * sin($delta_Rad_Lon / 2); //Square of half the chord length
$ang_Dist_Rad = 2 * asin(sqrt($sq_Half_Chord)); //Angular distance in radians
$distance2 = $radius * $ang_Dist_Rad;
//echo "distance=$distance and distance2=$distance2\n";
$avg_distance=-1;
$distance1=acos(2);
if((!is_nan($distance1)) && (!is_nan($distance2))){
$avg_distance=($distance1+$distance2)/2;
} else {
if(!is_nan($distance1)){
$avg_distance=$distance1;
try{
throw new Exception("distance1=NAN with lat1=$lat1 lat2=$lat2 lon1=$lon1 lon2=$lon2");
} catch(Exception $e){
trigger_error($e->getMessage());
trigger_error($e->getTraceAsString());
}
}
if(!is_nan($distance2)){
$avg_distance=$distance2;
try{
throw new Exception("distance1=NAN with lat1=$lat1 lat2=$lat2 lon1=$lon1 lon2=$lon2");
} catch(Exception $e){
trigger_error($e->getMessage());
trigger_error($e->getTraceAsString());
}
}
}
return $avg_distance;
}
HTH someone in the future as well.

Categories