PHP: JSON like data format, searching parser - php

I would like to have an JSON like data format with the following features:
support of arrays (ideal with [item; item; item] as notation and [key: value; key2: value2]), also nested
string support, ideal with the following: "foo",0x0a,"bar"
hex numbers, bin numbers, decimal numbers
Does anyone know a parser for such a data format written in PHP?
JSON is too inflexible, because keys must be in quotes and associative arrays have a different notation from normal ones and because of the missing string concatenation for special characters.

Take a look at YAML. It should come fairly close to what you want. It has lists and associative arrays, knows a number of data types. Support for hexadecimal numbers seems to depend on the parser used.
It doesn't seem to do binary numbers, and can't do string concatenation as outlined in your example, but a well-written parser should be relatively easy to extend accordingly. Also, there is a provision for user-defined data types.
Here is a list of PHP YAML parsers.

Related

yaml_parse works also with JSON ? what other formats I could use? [duplicate]

What are the differences between YAML and JSON, specifically considering the following things?
Performance (encode/decode time)
Memory consumption
Expression clarity
Library availability, ease of use (I prefer C)
I was planning to use one of these two in our embedded system to store configure files.
Related:
Should I use YAML or JSON to store my Perl data?
Technically YAML is a superset of JSON. This means that, in theory at least, a YAML parser can understand JSON, but not necessarily the other way around.
See the official specs, in the section entitled "YAML: Relation to JSON".
In general, there are certain things I like about YAML that are not available in JSON.
As #jdupont pointed out, YAML is visually easier to look at. In fact the YAML homepage is itself valid YAML, yet it is easy for a human to read.
YAML has the ability to reference other items within a YAML file using "anchors." Thus it can handle relational information as one might find in a MySQL database.
YAML is more robust about embedding other serialization formats such as JSON or XML within a YAML file.
In practice neither of these last two points will likely matter for things that you or I do, but in the long term, I think YAML will be a more robust and viable data serialization format.
Right now, AJAX and other web technologies tend to use JSON. YAML is currently being used more for offline data processes. For example, it is included by default in the C-based OpenCV computer vision package, whereas JSON is not.
You will find C libraries for both JSON and YAML. YAML's libraries tend to be newer, but I have had no trouble with them in the past. See for example Yaml-cpp.
Differences:
YAML, depending on how you use it, can be more readable than JSON
JSON is often faster and is probably still interoperable with more systems
It's possible to write a "good enough" JSON parser very quickly
Duplicate keys, which are potentially valid JSON, are definitely invalid YAML.
YAML has a ton of features, including comments and relational anchors. YAML syntax is accordingly quite complex, and can be hard to understand.
It is possible to write recursive structures in yaml: {a: &b [*b]}, which will loop infinitely in some converters. Even with circular detection, a "yaml bomb" is still possible (see xml bomb).
Because there are no references, it is impossible to serialize complex structures with object references in JSON. YAML serialization can therefore be more efficient.
In some coding environments, the use of YAML can allow an attacker to execute arbitrary code.
Observations:
Python programmers are generally big fans of YAML, because of the use of indentation, rather than bracketed syntax, to indicate levels.
Many programmers consider the attachment of "meaning" to indentation a poor choice.
If the data format will be leaving an application's environment, parsed within a UI, or sent in a messaging layer, JSON might be a better choice.
YAML can be used, directly, for complex tasks like grammar definitions, and is often a better choice than inventing a new language.
Bypassing esoteric theory
This answers the title, not the details as most just read the title from a search result on google like me so I felt it was necessary to explain from a web developer perspective.
YAML uses space indentation, which is familiar territory for Python developers.
JavaScript developers love JSON because it is a subset of JavaScript and can be directly interpreted and written inside JavaScript, along with using a shorthand way to declare JSON, requiring no double quotes in keys when using typical variable names without spaces.
There are a plethora of parsers that work very well in all languages for both YAML and JSON.
YAML's space format can be much easier to look at in many cases because the formatting requires a more human-readable approach.
YAML's form while being more compact and easier to look at can be deceptively difficult to hand edit if you don't have space formatting visible in your editor. Tabs are not spaces so that further confuses if you don't have an editor to interpret your keystrokes into spaces.
JSON is much faster to serialize and deserialize because of significantly less features than YAML to check for, which enables smaller and lighter code to process JSON.
A common misconception is that YAML needs less punctuation and is more compact than JSON but this is completely false. Whitespace is invisible so it seems like there are less characters, but if you count the actual whitespace which is necessary to be there for YAML to be interpreted properly along with proper indentation, you will find YAML actually requires more characters than JSON. JSON doesn't use whitespace to represent hierarchy or grouping and can be easily flattened with unnecessary whitespace removed for more compact transport.
The Elephant in the room: The Internet itself
JavaScript so clearly dominates the web by a huge margin and JavaScript developers prefer using JSON as the data format overwhelmingly along with popular web APIs so it becomes difficult to argue using YAML over JSON when doing web programming in the general sense as you will likely be outvoted in a team environment. In fact, the majority of web programmers aren't even aware YAML exists, let alone consider using it.
If you are doing any web programming, JSON is the default way to go because no translation step is needed when working with JavaScript so then you must come up with a better argument to use YAML over JSON in that case.
This question is 6 years old, but strangely, none of the answers really addresses all four points (speed, memory, expressiveness, portability).
Speed
Obviously this is implementation-dependent, but because JSON is so widely used, and so easy to implement, it has tended to receive greater native support, and hence speed. Considering that YAML does everything that JSON does, plus a truckload more, it's likely that of any comparable implementations of both, the JSON one will be quicker.
However, given that a YAML file can be slightly smaller than its JSON counterpart (due to fewer " and , characters), it's possible that a highly optimised YAML parser might be quicker in exceptional circumstances.
Memory
Basically the same argument applies. It's hard to see why a YAML parser would ever be more memory efficient than a JSON parser, if they're representing the same data structure.
Expressiveness
As noted by others, Python programmers tend towards preferring YAML, JavaScript programmers towards JSON. I'll make these observations:
It's easy to memorise the entire syntax of JSON, and hence be very confident about understanding the meaning of any JSON file. YAML is not truly understandable by any human. The number of subtleties and edge cases is extreme.
Because few parsers implement the entire spec, it's even harder to be certain about the meaning of a given expression in a given context.
The lack of comments in JSON is, in practice, a real pain.
Portability
It's hard to imagine a modern language without a JSON library. It's also hard to imagine a JSON parser implementing anything less than the full spec. YAML has widespread support, but is less ubiquitous than JSON, and each parser implements a different subset. Hence YAML files are less interoperable than you might think.
Summary
JSON is the winner for performance (if relevant) and interoperability. YAML is better for human-maintained files. HJSON is a decent compromise although with much reduced portability. JSON5 is a more reasonable compromise, with well-defined syntax.
GIT and YAML
The other answers are good. Read those first. But I'll add one other reason to use YAML sometimes: git.
Increasingly, many programming projects use git repositories for distribution and archival. And, while a git repo's history can equally store JSON and YAML files, the "diff" method used for tracking and displaying changes to a file is line-oriented. Since YAML is forced to be line-oriented, any small changes in a YAML file are easier to see by a human.
It is true, of course, that JSON files can be "made pretty" by sorting the strings/keys and adding indentation. But this is not the default and I'm lazy.
Personally, I generally use JSON for system-to-system interaction. I often use YAML for config files, static files, and tracked files. (I also generally avoid adding YAML relational anchors. Life is too short to hunt down loops.)
Also, if speed and space are really a concern, I don't use either. You might want to look at BSON.
I find YAML to be easier on the eyes: less parenthesis, "" etc. Although there is the annoyance of tabs in YAML... but one gets the hang of it.
In terms of performance/resources, I wouldn't expect big differences between the two.
Futhermore, we are talking about configuration files and so I wouldn't expect a high frequency of encode/decode activity, no?
Technically YAML offers a lot more than JSON (YAML v1.2 is a superset of JSON):
comments
anchors and inheritance - example of 3 identical items:
item1: &anchor_name
name: Test
title: Test title
item2: *anchor_name
item3:
<<: *anchor_name
# You may add extra stuff.
...
Most of the time people will not use those extra features and the main difference is that YAML uses indentation whilst JSON uses brackets. This makes YAML more concise and readable (for the trained eye).
Which one to choose?
YAML extra features and concise notation makes it a good choice for configuration files (non-user provided files).
JSON limited features, wide support, and faster parsing makes it a great choice for interoperability and user provided data.
If you don't need any features which YAML has and JSON doesn't, I would prefer JSON because it is very simple and is widely supported (has a lot of libraries in many languages). YAML is more complex and has less support. I don't think the parsing speed or memory use will be very much different, and maybe not a big part of your program's performance.
Benchmark results
Below are the results of a benchmark to compare YAML vs JSON loading times, on Python and Perl
JSON is much faster, at the expense of some readability, and features such as comments
Test method
100 sequential runs on a fast machine, average number of seconds
The dataset was a 3.44MB JSON file, containing movie data scraped from Wikipedia
https://raw.githubusercontent.com/prust/wikipedia-movie-data/master/movies.json
Linked to from: https://github.com/jdorfman/awesome-json-datasets
Results
Python 3.8.3 timeit
JSON: 0.108
YAML CLoader: 3.684
YAML: 29.763
Perl 5.26.2 Benchmark::cmpthese
JSON XS: 0.107
YAML XS: 0.574
YAML Syck: 1.050
Perl 5.26.2 Dumbbench (Brian D Foy, excludes outliers)
JSON XS: 0.102
YAML XS: 0.514
YAML Syck: 1.027
From: Arnaud Lauret Book “The Design of Web APIs.” :
The JSON data format
JSON is a text data format based on how the JavaScript programming language describes data but is, despite its name, completely language-independent (see https://www.json.org/). Using JSON, you can describe objects containing unordered name/value pairs and also arrays or lists containing ordered values, as shown in this figure.
An object is delimited by curly braces ({}). A name is a quoted string ("name") and is sep- arated from its value by a colon (:). A value can be a string like "value", a number like 1.23, a Boolean (true or false), the null value null, an object, or an array. An array is delimited by brackets ([]), and its values are separated by commas (,).
The JSON format is easily parsed using any programming language. It is also relatively easy to read and write. It is widely adopted for many uses such as databases, configura- tion files, and, of course, APIs.
YAML
YAML (YAML Ain’t Markup Language) is a human-friendly, data serialization format. Like JSON, YAML (http://yaml.org) is a key/value data format. The figure shows a comparison of the two.
Note the following points:
There are no double quotes (" ") around property names and values in YAML.
JSON’s structural curly braces ({}) and commas (,) are replaced by newlines and
indentation in YAML.
Array brackets ([]) and commas (,) are replaced by dashes (-) and newlines in
YAML.
Unlike JSON, YAML allows comments beginning with a hash mark (#).
It is relatively easy to convert one of those formats into the other. Be forewarned though, you will lose comments when converting a YAML document to JSON.
Since this question now features prominently when searching for YAML and JSON, it's worth noting one rarely-cited difference between the two: license. JSON purports to have a license which JSON users must adhere to (including the legally-ambiguous "shall be used for Good, not Evil"). YAML carries no such license claim, and that might be an important difference (to your lawyer, if not to you).
Sometimes you don't have to decide for one over the other.
In Go, for example, you can have both at the same time:
type Person struct {
Name string `json:"name" yaml:"name"`
Age int `json:"age" yaml:"age"`
}
I find both YAML and JSON to be very effective. The only two things that really dictate when one is used over the other for me is one, what the language is used most popularly with. For example, if I'm using Java, Javascript, I'll use JSON. For Java, I'll use their own objects, which are pretty much JSON but lacking in some features, and convert it to JSON if I need to or make it in JSON in the first place. I do that because that's a common thing in Java and makes it easier for other Java developers to modify my code. The second thing is whether I'm using it for the program to remember attributes, or if the program is receiving instructions in the form of a config file, in this case I'll use YAML, because it's very easily human read, has nice looking syntax, and is very easy to modify, even if you have no idea how YAML works. Then, the program will read it and convert it to JSON, or whatever is preferred for that language.
In the end, it honestly doesn't matter. Both JSON and YAML are easily read by any experienced programmer.
If you are concerned about better parsing speed then storing the data in JSON is the option. I had to parse the data from a location where the file was subject to modification from other users and hence I used YAML as it provides better readability compared to JSON.
And you can also add comments in the YAML file which can't be done in a JSON file.
JSON encodes six data types: Objects (mappings), Arrays, Strings Numbers, Booleans and Null. It is extremely easy for a machine to parse and provides very little flexibility. The specification is about a page and a half.
YAML allows the encoding of arbitrary Python data and other crazy crap (which leads to vulnerabilities when decoding it). It is hard to parse because it offers so much flexibility. The specification for YAML was 86 pages, the last time I checked. YAML syntax is obviously influenced by Python, but maybe they should have been a little more influenced by the Python philosophy on a few points: e.g. “there should be one—and preferably only one—obvious way to do it” and “simple is better than complex.”
The main benefit of YAML over JSON is that it’s easier for humans to read and edit, which makes it a natural choice for configuration files.
These days, I’m leaning towards TOML for configuration files. It’s not as pretty or as flexible as YAML, but it’s easier both for machines and humans to parse. The syntax is (almost) a superset of INI syntax, but it parses out to JSON-like data structures, adding only one additional type: the date type.

Encoding/charset associated to PHP strings

The PHP documentation says:
Of course, in order to be useful, functions that operate on text may have to make some assumptions about how the string is encoded. Unfortunately, there is much variation on this matter throughout PHP’s functions:
[... a few special cases are described ...]
Ultimately, this means writing correct programs using Unicode depends on carefully avoiding functions that will not work and that most likely will corrupt the data [...]
Source: https://www.php.net/manual/en/language.types.string.php
So naturally my question is: Where are these specifications that allow us to identify the encoding/charset associated to string arguments, return values, constants, array keys/values, ... for built-in functions/methods/data (e.g. array_key_exists, DOMDocument::getElementsByTagName, DateTime::format, $_GET[$key], ini_set, PDO::__construct, json_decode, Exception::getMessage() and many more)? How do composer package providers specify the encodings in which they accept/provide textual data?
I have been working roughly with the following heuristic: (1) never change the encoding of anything, (2) when forced to pick an encoding, pick UTF-8. This has been working for years but it feels very unsatisfactory.
Whenever I try to find an answer to the question, I only get search results relating to url encoding, HTML entities or explaining the interpretation of string literals (with the source file's encoding).
Strings in PHP are what other languages would call byte arrays, i.e. purely a raw sequence of bytes. PHP is not generally interested in what characters those bytes represent, they're just bytes. Only functions that need to work with strings on a character level need to be aware of the encoding, anything else doesn't.
For example, array_key_exists doesn't need to know anything about characters to figure out whether a key with the same bytes as the given string exists in an array.
However, mb_strlen for example explicitly tells you how many characters the string consists of, so it needs to interpret the given string in a specific encoding to give you the right number of characters. mb_strlen('漢字', 'latin1') and mb_strlen('漢字', 'utf-8') give very different results. There isn't a unified way how these kinds of functions are made encoding aware*, you will need to consult their manual entries.
* The mb_ functions in particular generally use mb_internal_encoding(), but other sets of functions won't.
Functions like DateTime::format are looking for specific characters in the format string to replace by date values, e.g. d for the day, m for the month etc. You can generally assume that these are ASCII byte values it's looking for, unless specified otherwise (and I'm not aware of anything that specifies otherwise). So any ASCII compatible encoding will usually do.
For a lot more details, you may be interested in What Every Programmer Absolutely, Positively Needs To Know About Encodings And Character Sets To Work With Text.
Often this can be found in the official documentation, e.g., the DOMDocument class has a property encoding (determined by XML declaration). As for methods that return strings, I recommend reading this

Is it okay to represent JSON [] and {} as different values in PHP?

I'm writing data and string parsers for a JSON variant. My understanding is that standard JSON is incompatible with PHP, since PHP uses the same datatype (Array) for JSON arrays and JSON objects. This problem is severe with empty JSON arrays and objects, since once converted to a PHP value, they are indistinguishable. So if you start with JSON strings "[]" and "{}", converting them to values and then back to JSON makes them look the same.
My basic idea is to require PHP arrays intended to be represented as JSON objects, especially empty arrays that should be encoded or stringified to "{}", to be represented differently in PHP programs, so proper error checking and JSON conversion can be done. Of course, for nonempty PHP arrays, it is possible to determine programmatically whether they have indices that are successive integers starting at 0 or not. But such a check fails to be useful if empty JSON arrays and objects are also to be properly distinguished.
The actual distinction discussed here is important to choose well, as programmers will be required to generate and type-check PHP Arrays differently depending on whether they are intended to correspond to "[]" or "{}" syntax in JSON.
So, my question is: what distinctive representation is best? The main candidates are:
for PHP associative arrays representing JSON objects:
$JSONobject=(object){};
$JSONobject=new stdClass();
$JSONobject=json_decode("{}");
I list these separately as I am not sure if they all have the same internal representation.
For PHP sequential list arrays representing JSON arrays, the Array datatype would be used unchanged, so an empty JSON array would be generated by $JSONarray=[]; or $JSONarray=new Array();
I have an answer to my own question, as a result of experimentation: I've found that json_decode("[]") results in a zero-length array, and json_decode("{}") results in a standard class object with no properties, no inheritance, and no methods. Furthermore, json_encode(json_decode ("[]") results in "[]", which is correct, and json_encode(json_decode ("{}") results in "{}", which is also correct.
So PHP itself chose my proposed answer to disambiguate the PHP Array type into two separate subtypes (Array and Class Object).
I think this answers my question in the affirmative. Furthermore, the three ways I listed above for representing JSON "{}" are indeed equivalent, as I guessed.
I hope this question and answer help those who may be puzzled by this issue in the future. The ambiguity of using Array to represent both lists and associative maps is permitted (and probably recommended) to be resolved in just the way I described.

Could you ever legitimately have an occurrence of "}{" in a JSON string

I am generating a sequential string of independent JSON strings for insertion into a single field in my database (the means justify the end), and am wondering if a JSON string could ever legally have an occurrence of two opposing(ly) faced curly braces such as }{? As I would like to use this pattern as a delimiter if so.
I am using PHP's json_encode function for this purpose.
Should say that I don't mean as a value - or key if that were possible as I am in control of the data. Seems like a stupid question now.
Yes. It can form part of a string in JSON text.
{
"EskimoKiss": "}{"
}
If you must store multiple pieces of data expressed as JSON in a database field, then parse them to objects, wrap them in an array, then serialise that array to JSON and store that.
You really should normalise the data though.

Is a string in PHP an array, or not?

I need to ask that what is string in PHP. Is it an array in PHP or not. Please give true justifications.
A string in PHP is essentially a byte array (but not in the sense of a PHP's "array"); i.e., it's a buffer with only one piece of meta-data -- the size of the buffer.
An array in PHP is a double-linked hash table map, where the keys can be integers, strings, or a mixture of both.
In terms of PHP's type system, strings and arrays are two of the basic types.
You can read the documentation about php strings at
http://www.php.net/manual/en/language.types.string.php
http://php.net/manual/en/language.types.array.php
In PHP, a string is a primitive type, meaning it's not an array. See here for the other primitive types supported by PHP.

Categories