I have a doubt.
I have a big query to get all the products of a web store, then I proccess the data to a CSV to synchronize to another external server, in this case DooFinder.
Now I am doing the proccess in the query. Example:
- round((p.p_price*(SELECT tax_rate FROM tax_rates WHERE tax_rates.tax_rates_id=p.p_tax_class_id)/100)+p.p_price,2)
- concat('https://www.domain.de/pimg/',p.p_image) AS image, p.manufacturers_id
And the question is: What will be more efficient? Make the operations in the query or in PHP? Now I have over 20 products in a test site and it works perfect, but the objective is have +1.000 products.
This is the query ($i is for each language, so +1.000 products * number of languages):
SELECT
pd.p_name,
p.p_quantity,
concat('https://www.domain.de/pinf.php?products_id=',p.products_id) AS p_link,
pd.p_description,
p.p_id,
p.p_tax_class_id,
p.p_date_available ,
round((p.p_price*(SELECT tax_rate FROM tax_rates WHERE tax_rates.tax_rates_id=p.p_tax_class_id)/100)+p.p_price,2) AS price,
concat('https://www.domain.de/pimg/',p.p_image) AS image, p.manufacturers_id
FROM
products p,
p_description pd,
p_to_categories ptc
WHERE
p.p_id = pd.p_id
AND
pd.language_id = ".$i."
AND
p.p_status=1
AND
ptc.p_id = p.p_id
AND
ptc.categories_id != 218
GROUP by p.p_id
When deciding whether to perform the computations on the client or on the database server, you should consider the following:
Which one has more spare CPU cycles?
Will making the client do the computation require additional data transfer from the server? If doing it on the server reduces the data transfer, it may be worthwhile to make the database CPU work a bit harder.
Can you reduce the data transfer by making the client compute the result? E.g. suppose the client displays 100 computations based on one column. In that case it makes sense to fetch just that column instead of all of the computations based on it.
In your specific example, the overhead of extra computations is going to be marginal relative to the rest of the query, so if you already have it coded to do it on the server, I would leave it like that. At the same time, if you are doing it on the client, it is not that bad either, so I would still not bother refactoring.
However, there is one thing that I would fix - rewrite the tax rate sub-select as a join. This one would have more overhead than any of the computations even if properly optimized by the MySQL optimizer.
And, of course, as was suggested in the comments, benchmark your performance and make decisions based on those measurements. Proper benchmarking aside from the obvious has a side benefit of helping find odd performance and even functionality bugs that otherwise would have been found by your users at the worst possible time.
I've heard that SELECT * is generally bad practice to use when writing SQL commands because it is more efficient to SELECT columns you specifically need.
If I need to SELECT every column in a table, should I use
SELECT * FROM TABLE
or
SELECT column1, colum2, column3, etc. FROM TABLE
Does the efficiency really matter in this case? I'd think SELECT * would be more optimal internally if you really need all of the data, but I'm saying this with no real understanding of database.
I'm curious to know what the best practice is in this case.
UPDATE: I probably should specify that the only situation where I would really want to do a SELECT * is when I'm selecting data from one table where I know all columns will always need to be retrieved, even when new columns are added.
Given the responses I've seen however, this still seems like a bad idea and SELECT * should never be used for a lot more technical reasons that I ever though about.
One reason that selecting specific columns is better is that it raises the probability that SQL Server can access the data from indexes rather than querying the table data.
Here's a post I wrote about it: The real reason select queries are bad index coverage
It's also less fragile to change, since any code that consumes the data will be getting the same data structure regardless of changes you make to the table schema in the future.
Given your specification that you are selecting all columns, there is little difference at this time. Realize, however, that database schemas do change. If you use SELECT * you are going to get any new columns added to the table, even though in all likelihood, your code is not prepared to use or present that new data. This means that you are exposing your system to unexpected performance and functionality changes.
You may be willing to dismiss this as a minor cost, but realize that columns that you don't need still must be:
Read from database
Sent across the network
Marshalled into your process
(for ADO-type technologies) Saved in a data-table in-memory
Ignored and discarded / garbage-collected
Item #1 has many hidden costs including eliminating some potential covering index, causing data-page loads (and server cache thrashing), incurring row / page / table locks that might be otherwise avoided.
Balance this against the potential savings of specifying the columns versus an * and the only potential savings are:
Programmer doesn't need to revisit the SQL to add columns
The network-transport of the SQL is smaller / faster
SQL Server query parse / validation time
SQL Server query plan cache
For item 1, the reality is that you're going to add / change code to use any new column you might add anyway, so it is a wash.
For item 2, the difference is rarely enough to push you into a different packet-size or number of network packets. If you get to the point where SQL statement transmission time is the predominant issue, you probably need to reduce the rate of statements first.
For item 3, there is NO savings as the expansion of the * has to happen anyway, which means consulting the table(s) schema anyway. Realistically, listing the columns will incur the same cost because they have to be validated against the schema. In other words this is a complete wash.
For item 4, when you specify specific columns, your query plan cache could get larger but only if you are dealing with different sets of columns (which is not what you've specified). In this case, you do want different cache entries because you want different plans as needed.
So, this all comes down, because of the way you specified the question, to the issue resiliency in the face of eventual schema modifications. If you're burning this schema into ROM (it happens), then an * is perfectly acceptable.
However, my general guideline is that you should only select the columns you need, which means that sometimes it will look like you are asking for all of them, but DBAs and schema evolution mean that some new columns might appear that could greatly affect the query.
My advice is that you should ALWAYS SELECT specific columns. Remember that you get good at what you do over and over, so just get in the habit of doing it right.
If you are wondering why a schema might change without code changing, think in terms of audit logging, effective/expiration dates and other similar things that get added by DBAs for systemically for compliance issues. Another source of underhanded changes is denormalizations for performance elsewhere in the system or user-defined fields.
You should only select the columns that you need. Even if you need all columns it's still better to list column names so that the sql server does not have to query system table for columns.
Also, your application might break if someone adds columns to the table. Your program will get columns it didn't expect too and it might not know how to process them.
Apart from this if the table has a binary column then the query will be much more slower and use more network resources.
There are four big reasons that select * is a bad thing:
The most significant practical reason is that it forces the user to magically know the order in which columns will be returned. It's better to be explicit, which also protects you against the table changing, which segues nicely into...
If a column name you're using changes, it's better to catch it early (at the point of the SQL call) rather than when you're trying to use the column that no longer exists (or has had its name changed, etc.)
Listing the column names makes your code far more self-documented, and so probably more readable.
If you're transferring over a network (or even if you aren't), columns you don't need are just waste.
Specifying the column list is usually the best option because your application won't be affected if someone adds/inserts a column to the table.
Specifying column names is definitely faster - for the server. But if
performance is not a big issue (for example, this is a website content database with hundreds, maybe thousands - but not millions - of rows in each table); AND
your job is to create many small, similar applications (e.g. public-facing content-managed websites) using a common framework, rather than creating a complex one-off application; AND
flexibility is important (lots of customization of the db schema for each site);
then you're better off sticking with SELECT *. In our framework, heavy use of SELECT * allows us to introduce a new website managed content field to a table, giving it all of the benefits of the CMS (versioning, workflow/approvals, etc.), while only touching the code at a couple of points, instead of a couple dozen points.
I know the DB gurus are going to hate me for this - go ahead, vote me down - but in my world, developer time is scarce and CPU cycles are abundant, so I adjust accordingly what I conserve and what I waste.
SELECT * is a bad practice even if the query is not sent over a network.
Selecting more data than you need makes the query less efficient - the server has to read and transfer extra data, so it takes time and creates unnecessary load on the system (not only the network, as others mentioned, but also disk, CPU etc.). Additionally, the server is unable to optimize the query as well as it might (for example, use covering index for the query).
After some time your table structure might change, so SELECT * will return a different set of columns. So, your application might get a dataset of unexpected structure and break somewhere downstream. Explicitly stating the columns guarantees that you either get a dataset of known structure, or get a clear error on the database level (like 'column not found').
Of course, all this doesn't matter much for a small and simple system.
Lots of good reasons answered here so far, here's another one that hasn't been mentioned.
Explicitly naming the columns will help you with maintenance down the road. At some point you're going to be making changes or troubleshooting, and find yourself asking "where the heck is that column used".
If you've got the names listed explicitly, then finding every reference to that column -- through all your stored procedures, views, etc -- is simple. Just dump a CREATE script for your DB schema, and text search through it.
Performance wise, SELECT with specific columns can be faster (no need to read in all the data). If your query really does use ALL the columns, SELECT with explicit parameters is still preferred. Any speed difference will be basically unnoticeable and near constant-time. One day your schema will change, and this is good insurance to prevent problems due to this.
definitely defining the columns, because SQL Server will not have to do a lookup on the columns to pull them. If you define the columns, then SQL can skip that step.
It's always better to specify the columns you need, if you think about it one time, SQL doesn't have to think "wtf is *" every time you query. On top of that, someone later may add columns to the table that you actually do not need in your query and you'll be better off in that case by specifying all of your columns.
The problem with "select *" is the possibility of bringing data you don't really need. During the actual database query, the selected columns don't really add to the computation. What's really "heavy" is the data transport back to your client, and any column that you don't really need is just wasting network bandwidth and adding to the time you're waiting for you query to return.
Even if you do use all the columns brought from a "select *...", that's just for now. If in the future you change the table/view layout and add more columns, you'll start bring those in your selects even if you don't need them.
Another point in which a "select *" statement is bad is on view creation. If you create a view using "select *" and later add columns to your table, the view definition and the data returned won't match, and you'll need to recompile your views in order for them to work again.
I know that writing a "select *" is tempting, 'cause I really don't like to manually specify all the fields on my queries, but when your system start to evolve, you'll see that it's worth to spend this extra time/effort in specifying the fields rather than spending much more time and effort removing bugs on your views or optimizing your app.
While explicitly listing columns is good for performance, don't get crazy.
So if you use all the data, try SELECT * for simplicity (imagine having many columns and doing a JOIN... query may get awful). Then - measure. Compare with query with column names listed explicitly.
Don't speculate about performance, measure it!
Explicit listing helps most when you have some column containing big data (like body of a post or article), and don't need it in given query. Then by not returning it in your answer DB server can save time, bandwidth, and disk throughput. Your query result will also be smaller, which is good for any query cache.
You should really be selecting only the fields you need, and only the required number, i.e.
SELECT Field1, Field2 FROM SomeTable WHERE --(constraints)
Outside of the database, dynamic queries run the risk of injection attacks and malformed data. Typically you get round this using stored procedures or parameterised queries. Also (although not really that much of a problem) the server has to generate an execution plan each time a dynamic query is executed.
It is NOT faster to use explicit field names versus *, if and only if, you need to get the data for all fields.
Your client software shouldn't depend on the order of the fields returned, so that's a nonsense too.
And it's possible (though unlikely) that you need to get all fields using * because you don't yet know what fields exist (think very dynamic database structure).
Another disadvantage of using explicit field names is that if there are many of them and they're long then it makes reading the code and/or the query log more difficult.
So the rule should be: if you need all the fields, use *, if you need only a subset, name them explicitly.
The result is too huge. It is slow to generate and send the result from the SQL engine to the client.
The client side, being a generic programming environment, is not and should not be designed to filter and process the results (e.g. the WHERE clause, ORDER clause), as the number of rows can be huge (e.g. tens of millions of rows).
Naming each column you expect to get in your application also ensures your application won't break if someone alters the table, as long as your columns are still present (in any order).
Performance wise I have seen comments that both are equal. but usability aspect there are some +'s and -'s
When you use a (select *) in a query and if some one alter the table and add new fields which do not need for the previous query it is an unnecessary overhead. And what if the newly added field is a blob or an image field??? your query response time is going to be really slow then.
In other hand if you use a (select col1,col2,..) and if the table get altered and added new fields and if those fields are needed in the result set, you always need to edit your select query after table alteration.
But I suggest always to use select col1,col2,... in your queries and alter the query if the table get altered later...
This is an old post, but still valid. For reference, I have a very complicated query consisting of:
12 tables
6 Left joins
9 inner joins
108 total columns on all 12 tables
I only need 54 columns
A 4 column Order By clause
When I execute the query using Select *, it takes an average of 2869ms.
When I execute the query using Select , it takes an average of 1513ms.
Total rows returned is 13,949.
There is no doubt selecting column names means faster performance over Select *
Select is equally efficient (in terms of velocity) if you use * or columns.
The difference is about memory, not velocity. When you select several columns SQL Server must allocate memory space to serve you the query, including all data for all the columns that you've requested, even if you're only using one of them.
What does matter in terms of performance is the excecution plan which in turn depends heavily on your WHERE clause and the number of JOIN, OUTER JOIN, etc ...
For your question just use SELECT *. If you need all the columns there's no performance difference.
It depends on the version of your DB server, but modern versions of SQL can cache the plan either way. I'd say go with whatever is most maintainable with your data access code.
One reason it's better practice to spell out exactly which columns you want is because of possible future changes in the table structure.
If you are reading in data manually using an index based approach to populate a data structure with the results of your query, then in the future when you add/remove a column you will have headaches trying to figure out what went wrong.
As to what is faster, I'll defer to others for their expertise.
As with most problems, it depends on what you want to achieve. If you want to create a db grid that will allow all columns in any table, then "Select *" is the answer. However, if you will only need certain columns and adding or deleting columns from the query is done infrequently, then specify them individually.
It also depends on the amount of data you want to transfer from the server. If one of the columns is a defined as memo, graphic, blob, etc. and you don't need that column, you'd better not use "Select *" or you'll get a whole bunch of data you don't want and your performance could suffer.
To add on to what everyone else has said, if all of your columns that you are selecting are included in an index, your result set will be pulled from the index instead of looking up additional data from SQL.
SELECT * is necessary if one wants to obtain metadata such as the number of columns.
Gonna get slammed for this, but I do a select * because almost all my data is retrived from SQL Server Views that precombine needed values from multiple tables into a single easy to access View.
I do then want all the columns from the view which won't change when new fields are added to underlying tables. This has the added benefit of allowing me to change where data comes from. FieldA in the View may at one time be calculated and then I may change it to be static. Either way the View supplies FieldA to me.
The beauty of this is that it allows my data layer to get datasets. It then passes them to my BL which can then create objects from them. My main app only knows and interacts with the objects. I even allow my objects to self-create when passed a datarow.
Of course, I'm the only developer, so that helps too :)
What everyone above said, plus:
If you're striving for readable maintainable code, doing something like:
SELECT foo, bar FROM widgets;
is instantly readable and shows intent. If you make that call you know what you're getting back. If widgets only has foo and bar columns, then selecting * means you still have to think about what you're getting back, confirm the order is mapped correctly, etc. However, if widgets has more columns but you're only interested in foo and bar, then your code gets messy when you query for a wildcard and then only use some of what's returned.
And remember if you have an inner join by definition you do not need all the columns as the data in the join columns is repeated.
It's not like listing columns in SQl server is hard or even time-consuming. You just drag them over from the object browser (you can get all in one go by dragging from the word columns). To put a permanent performance hit on your system (becasue this can reduce the use of indexes and becasue sending unneeded data over the network is costly) and make it more likely that you will have unexpected problems as the database changes (sometimes columns get added that you do not want the user to see for instance) just to save less than a minute of development time is short-sighted and unprofessional.
Absolutely define the columns you want to SELECT every time. There is no reason not to and the performance improvement is well worth it.
They should never have given the option to "SELECT *"
If you need every column then just use SELECT * but remember that the order could potentially change so when you are consuming the results access them by name and not by index.
I would ignore comments about how * needs to go get the list - chances are parsing and validating named columns is equal to the processing time if not more. Don't prematurely optimize ;-)
I'm running Ubuntu 13.04 with an nginx webserver installed. I'm writing a mini-social network for the users on my website, but for some reason the scripts I use to load things like profiles and "walls" are sometimes slow. Not all of them are slow, but especially the newsfeed script where it shows recent posts by friends.
I've added a bunch of microtime() checks throughout the script and it seems the query to get the recent posts is taking the most time. I tried to optimize it as much as possible but it still seems to be slow. I'm using MySQLi. Here is my query:
SELECT `id`,`posterName`, `posterUUID`, `message`, `postDate`, `likes`, `whoLiked`
FROM `wallposts`
WHERE (
`wallUUID` IN (' . implode(',', $friendStr) . ')
AND posterUUID = wallUUID
)
OR wallUUID="GLOBAL"
AND isDeleted=0
ORDER BY `postDate` DESC
LIMIT 25
Would it be faster to just use SELECT * since I'm pretty much selecting most of the columns anyway? I'm not sure what else to try, so that's why I came here.
Any help please as to what I could do/not do to keep it from taking 5+ seconds just for this query?
Several things:
using * instead of a list of columns is usually a bad idea, the risk is to add a column that you do not need and this column could be containing large amounts of binary data, this would make your query slower. So it's certainly not something to care about when you have speed problems.
you may have some priority of logical operators AND/OR problems
Your query is:
WHERE (A)
OR B
AND C
And I'm pretty sure you mean:
WHERE (
(A)
OR B
)
AND C
But AND takes precedence, so what you have is:
WHERE (A)
OR (
B
AND C
)
When in doubt use parenthesis (I'm in doubt there, but I would use parenthesis).
Your first WHERE condition is quite strange:
WHERE (
wallUUID IN (42,43,44,45,46)
AND posterUUID = wallUUID
)
That mean a filter on the friends identifiers for the wall posts, I guess, and then a filter which says for each row we need to have the same id for the poster uid and for the wall id.
I'm pretty that's not what you wanted. Maybe you need a join query here. Or maybe not, without the structure of your tables it's hard to guess
You will need a pretty decent indexation to get an optimized result on friend's posts results, an dindex which starts by the current user id, contain sthe right sort by date, the deletion thing, and certainly the friends identifiers.
user-friends relationships are hard to manage, especially when volumes gets bigger, usually building a social website involves pub/sub systems (publication subscriptions channels systems). You should study some pubsub databases schemas.
I have a page that is taking 37 seconds to load. While it is loading it pegs MySQL's CPU usage through the roof. I did not write the code for this page and it is rather convoluted so the reason for the bottleneck is not readily apparent to me.
I profiled it (using kcachegrind) and find that the bulk of the time on the page is spent doing MySQL queries (90% of the time is spent in 25 different mysql_query calls).
The queries take the form of the following with the tag_id changing on each of the 25 different calls:
SELECT * FROM tbl_news WHERE news_id
IN (select news_id from
tbl_tag_relations WHERE tag_id = 20)
Each query is taking around 0.8 seconds to complete with a few longer delays thrown in for good measure... thus the 37 seconds to completely load the page.
My question is, is it the way the query is formatted with that nested select that is causing the problem? Or could it be any one of a million other things? Any advice on how to approach tackling this slowness is appreciated.
Running EXPLAIN on the query gives me this (but I'm not clear on the impact of these results... the NULL on primary key looks like it would be bad, yes? The number of results returned seems high to me as well as only a handful of results are returned in the end):
1 PRIMARY tbl_news ALL NULL NULL NULL NULL 1318 Using where
2 DEPENDENT SUBQUERY tbl_tag_relations ref FK_tbl_tag_tags_1 FK_tbl_tag_tags_1 4 const 179 Using where
I'e addressed this point in Database Development Mistakes Made by AppDevelopers. Basically, favour joins to aggregation. IN isn't aggregation as such but the same principle applies. A good optimize will make these two queries equivalent in performance:
SELECT * FROM tbl_news WHERE news_id
IN (select news_id from
tbl_tag_relations WHERE tag_id = 20)
and
SELECT tn.*
FROM tbl_news tn
JOIN tbl_tag_relations ttr ON ttr.news_id = tn.news_id
WHERE ttr.tag_id = 20
as I believe Oracle and SQL Server both do but MySQL doesn't. The second version is basically instantaneous. With hundreds of thousands of rows I did a test on my machine and got the first version to sub-second performance by adding appropriate indexes. The join version with indexes is basically instantaneous but even without indexes performs OK.
By the way, the above syntax I use is the one you should prefer for doing joins. It's clearer than putting them in the WHERE clause (as others have suggested) and the above can do certain things in an ANSI SQL way with left outer joins that WHERE conditions can't.
So I would add indexes on the following:
tbl_news (news_id)
tbl_tag_relations (news_id)
tbl_tag_relations (tag_id)
and the query will execute almost instantaneously.
Lastly, don't use * to select all the columns you want. Name them explicitly. You'll get into less trouble as you add columns later.
The SQL Query itself is definitely your bottleneck. The query has a sub-query in it, which is the IN(...) portion of the code. This is essentially running two queries at once. You can likely halve (or more!) your SQL times with a JOIN (similar to what d03boy mentions above) or a more targeted SQL query. An example might be:
SELECT *
FROM tbl_news, tbl_tag_relations
WHERE tbl_tag_relations.tag_id = 20 AND
tbl_news.news_id = tbl_tag_relations.news_id
To help SQL run faster you also want to try to avoid using SELECT *, and only select the information you need; also put a limiting statement at the end. eg:
SELECT news_title, news_body
...
LIMIT 5;
You also will want to look into the database schema itself. Make sure you are indexing all of the commonly referred to columns so that the queries will run faster. In this case, you probably want to check your news_id and tag_id fields.
Finally, you will want to take a look at the PHP code and see if you can make one single all-encompassing SQL query instead of iterating through several seperate queries. If you post more code we can help with that, and it will probably be the single greatest time savings for your posted problem. :)
If I understand correctly, this is just listing the news stories for a specific set of tags.
First of all, you really shouldn't
ever SELECT *
Second, this can probably be
accomplished within a single query,
thus reducing the overhead cost of
multiple queries. It seems like it
is getting fairly trivial data so
it could be retrieved within a
single call instead of 20.
A better approach to using IN might be to use a JOIN with a WHERE condition instead. When using an IN it will basically be a lot of OR statements.
Your tbl_tag_relations should definitely have an index on tag_id
select *
from tbl_news, tbl_tag_relations
where
tbl_tag_relations.tag_id = 20 and
tbl_news.news_id = tbl_tag_relations.news_id
limit 20
I think this gives the same results, but I'm not 100% sure. Sometimes simply limiting the results helps.
Unfortunately MySQL doesn't do very well with uncorrelated subqueries like your case shows. The plan is basically saying that for every row on the outer query, the inner query will be performed. This will get out of hand quickly. Rewriting as a plain old join as others have mentioned will work around the problem but may then cause the undesired affect of duplicate rows.
For instance the original query would return 1 row for each qualifying row in the tbl_news table but this query:
SELECT news_id, name, blah
FROM tbl_news n
JOIN tbl_tag_relations r ON r.news_id = n.news_id
WHERE r.tag_id IN (20,21,22)
would return 1 row for each matching tag. You could stick DISTINCT on there which should only have a minimal performance impact depending on the size of the dataset.
Not to troll too badly, but most other databases (PostgreSQL, Firebird, Microsoft, Oracle, DB2, etc) would handle the original query as an efficient semi-join. Personally I find the subquery syntax to be much more readable and easier to write, especially for larger queries.