How do I genuinely calculate level progress with an algorithm? - php

in my app I get a var $curxp which holds an int, now I want to create a function that automatically returns $xplvlup (which holds an int how much total XP is needed for the next level and a function that returns the current level.
Now I could simply hardcode with switch statements and calculated numbers like:
switch($curxp){
case <10: $xplvlup = 10; break;
}
But it would be much nicer if I could use an algorithm so there is no max level.
I know I have to work with exponents to get a nice curve, but I just dont know how to start things up.
UPDATE
Thanks to Oltarus I came to the following solution:
$curxp = 20;
function level($lvl){
return $xp = pow($lvl,2) + 5 * $lvl;
}
$lvl = 0;
while (level($lvl) < $curxp) $lvl++;
$totxp = level($lvl);
$xplvlup = level($lvl) - $curxp;
echo 'Level: '.$lvl."<br />";
echo 'Total XP: '.$totxp."<br />";
echo 'XP needed for Levelup: '.$xplvlup;

If for instance you would have the first level-up require 500 xp, and then every level you will need 10% more xp you could do something like this:
function xp_needed($cur_lvl){
$start = 500;
return $start*pow(1.1,($cur_lvl-1));
}
For every level, the xp is calculated by 500 * 1.1^(level-1)
Edit
Woops, $cur_lvl should be substracted by 1.

I don't know how you calculate the levels, but let's say you have a function level($n) that returns how many XP are needed to have level $n.
$n = 0;
while (level($n) < $curxp) $n++;
$xplvlup = level($n) - $curxp;

Related

Limit the number of results in a for loop in reverse order

I created a for loop to occupy a table on my site. Originally I limited the number of results by using if (i++ <= 10) {.
However, I adjusted the for loop so it is reverse order (most recent item first). Here is my code:
for ($i=count($shipmentInfoArray['ShipmentList'])-1; $i >= 0; $i--) {
$shipmentUrl = BASE_URL . "shipment.php?ShipmentID=" . $shipmentInfoArray['ShipmentList'][$i]['ShipmentID'];
Obviously, since it's counting down instead of up, my original limit code won't work.
I tried this, but it didn't work:
if ($i-- >= (count($shipmentInfoArray['ShipmentList']) - (count($shipmentInfoArray['ShipmentList'])-10)) {
My hope was it would take the total number of entries, then subtract the same number by the number I want to display (100 - (100-10) = 10 entries.
I also tried adding a 'break' at the end, assuming that this didn't work because the "count" wasn't finished yet. However that didn't work either :/
Any suggestions? Thanks guys!
I feel you're making this over-complicated, and confusing yourself as you try to reason through the resulting complexity. There are many approaches, I don't know that one is any better than another...
You could initialize a second counter (say j) to 0 and increment it on each iteration, as one simple solution.
Something like the following should work:
// Set the limit to the max number of results
$LIMIT = 10;
foreach (array_reverse($shipmentInfoArray['ShipmentList']) as
$shipmentIndex => $shipment) {
if ($shipmentIndex >= $LIMIT) {
break;
}
// Use $shipment
}

Replace elseifs with math

My question is how could I replace those if's with math formula?
if ($l <= 3500)
{
$min = 100;
}
elseif ($l <= 4000)
{
$min = 120;
}
elseif ($l <= 4500)
{
$min = 140;
}
elseif ($l <= 5000)
{
$min = 160;
}
As you see this is raising 20 for every 500 levels.
As you see this is raising 20 for every 500 levels.
Well, that's your formula right there.
$min = 100 + ceil(($l-3500)/500) * 20;
We start with 100, our base value and add that to the rest of the calculation.
$l starts with 3500 less.
We ceil() the result since we only want to jump when we pass the whole value.
We multiply that by 20.
If we want to address the case where $l is less than 3500 and set 100 as the minimum value, we also need to asset that $l-3500 is more than zero. We can do this as such:
$min = 100 + ceil(max(0,$l-3500)/500) * 20;
How did I get there?
What we're actually doing is plotting a line. Like you said yourself we go a constant amount for every constant amount. We have something called linear progression here.
Great, so we recognized the problem we're facing. We have an imaginary line to plot and we want integer values. What next? Well, let's see where the line starts?
In your case the answer is pretty straightforward.
if ($l <= 3500) {
$min = 100;
}
That's our starting point. So we know the point (3500,100) is on our line. This means the result starts at 100 and the origin starts at 3500.
We know that our formula is in the form of 100+<something>. What is that something?
Like you said, for every 500 levels you're raising 20. So we know we move 20/500 for every 1 level (because well, if we multiply that by 500 we get our original rule). We also know (from before) that we start from 3500.
Now, we might be tempted to use $min = 100 + ($l-3500) * (20/500); and that's almost right. The only problem here is that you only want integer values. This is why we ceil the value of level/500 to only get whole steps.
I tried to keep this with as little math terminology as possible, you can check the wikipedia page if you want things more formal. If you'd like any clarification - let me know
Here is my approach about this problem. It's not better than a single-line formula, but for sake of being modifiable, I generally decide this kind of solutions:
$min = 100;
for($i=3500; $i<=5000; $i+=500)
{
if($l <= $i) break;
$min += 20;
}
//Now $min has got desired value.
You can express the function as follows:
f(x) := a * x + b
The inclination of the line is calculated as:
a := 20 / 500
To find b you need to extrapolate a value that's on the line; in this case, that could be 3500 (x) and 120 (f(x)). That works out to be -40.
So the function has become:
f(x) := (20 / 500) * x - 40
There are two special cases:
Left of 3500 the value of f(x) must remain 100, even though f(x) is less.
The inclination is not continuous but discrete.
Both cases applied:
$min = max(100, ceil($l / 500) * 20 - 40)

PHP algorithm to solve a system of linear equations of grade 1

I have a system of equations of grade 1 to resolve in PHP.
There are more equations than variables but there aren't less equations than variables.
The system would look like bellow. n equations, m variables, variables are x[i] where 'i' takes values from 1 to m. The system may have a solution or not.
m may be maximum 100 and n maximum ~5000 (thousands).
I will have to resolve like a few thousands of these systems of equations. Speed may be a problem but I'm looking for an algorithm written in PHP for now.
a[1][1] * x[1] + a[1][2] * x[2] + ... + a[1][m] * x[m] = number 1
a[2][1] * x[1] + a[2][2] * x[2] + ... + a[2][m] * x[m] = number 2
...
a[n][1] * x[1] + a[n][2] * x[2] + ... + a[n][m] * x[m] = number n
There is Cramer Rule which may do it. I could make 1 square matrix of coefficients, resolve the system with Cramer Rule (by calculating matrices' determinants) and than I should check the values in the unused equations.
I believe I could try Cramer by myself but I'm looking for a better solution.
This is a problem of Computational Science,
http://en.wikipedia.org/wiki/Computational_science#Numerical_simulations
I know there are some complex algorithms to solve my problem but I can't tell which one would do it and which is the best for my case. An algorithm would use me better than just the theory with the demonstration.
My question is, does anybody know a class, script, code of some sort written in PHP to resolve a system of linear equations of grade 1 ?
Alternatively I could try an API or a Web Service, best to be free, a paid one would do it too.
Thank you
I needed exactly this, but I couldn't find determinant function, so I made one myself. And the Cramer rule function too. Maybe it'll help someone.
/**
* $matrix must be 2-dimensional n x n array in following format
* $matrix = array(array(1,2,3),array(1,2,3),array(1,2,3))
*/
function determinant($matrix = array()) {
// dimension control - n x n
foreach ($matrix as $row) {
if (sizeof($matrix) != sizeof($row)) {
return false;
}
}
// count 1x1 and 2x2 manually - rest by recursive function
$dimension = sizeof($matrix);
if ($dimension == 1) {
return $matrix[0][0];
}
if ($dimension == 2) {
return ($matrix[0][0] * $matrix[1][1] - $matrix[0][1] * $matrix[1][0]);
}
// cycles for submatrixes calculations
$sum = 0;
for ($i = 0; $i < $dimension; $i++) {
// for each "$i", you will create a smaller matrix based on the original matrix
// by removing the first row and the "i"th column.
$smallMatrix = array();
for ($j = 0; $j < $dimension - 1; $j++) {
$smallMatrix[$j] = array();
for ($k = 0; $k < $dimension; $k++) {
if ($k < $i) $smallMatrix[$j][$k] = $matrix[$j + 1][$k];
if ($k > $i) $smallMatrix[$j][$k - 1] = $matrix[$j + 1][$k];
}
}
// after creating the smaller matrix, multiply the "i"th element in the first
// row by the determinant of the smaller matrix.
// odd position is plus, even is minus - the index from 0 so it's oppositely
if ($i % 2 == 0){
$sum += $matrix[0][$i] * determinant($smallMatrix);
} else {
$sum -= $matrix[0][$i] * determinant($smallMatrix);
}
}
return $sum;
}
/**
* left side of equations - parameters:
* $leftMatrix must be 2-dimensional n x n array in following format
* $leftMatrix = array(array(1,2,3),array(1,2,3),array(1,2,3))
* right side of equations - results:
* $rightMatrix must be in format
* $rightMatrix = array(1,2,3);
*/
function equationSystem($leftMatrix = array(), $rightMatrix = array()) {
// matrixes and dimension check
if (!is_array($leftMatrix) || !is_array($rightMatrix)) {
return false;
}
if (sizeof($leftMatrix) != sizeof($rightMatrix)) {
return false;
}
$M = determinant($leftMatrix);
if (!$M) {
return false;
}
$x = array();
foreach ($rightMatrix as $rk => $rv) {
$xMatrix = $leftMatrix;
foreach ($rightMatrix as $rMk => $rMv) {
$xMatrix[$rMk][$rk] = $rMv;
}
$x[$rk] = determinant($xMatrix) / $M;
}
return $x;
}
Wikipedia should have pseudocode for reducing the matrix representing your equations to reduced row echelon form. Once the matrix is in that form, you can walk through the rows to find a solution.
There's an unmaintained PEAR package which may save you the effort of writing the code.
Another question is whether you are looking mostly at "wide" systems (more variables than equations, which usually have many possible solutions) or "narrow" systems (more equations than variables, which usually have no solutions), since the best strategy depends on which case you are in — and narrow systems may benefit from using a linear regression technique such as least squares instead.
This package uses Gaussian Elimination. I found that it executes fast for larger matrices (i.e. more variables/equations).
There is a truly excellent package based on JAMA here: http://www.phpmath.com/build02/JAMA/docs/index.php
I've used it for simple linear right the way to highly complex Multiple Linear Regression (writing my own Backwards Stepwise MLR functions on top of that). Very comprehensive and will hopefully do what you need.
Speed could be considered an issue, for sure. But works a treat and matched SPSS when I cross referenced results on the BSMLR calculations.

Need to get multiplier that will bring fractions of a cent to a whole cent

I want to be able to specify a fraction of a cent (100th max) in a php application. I need to figure out how many iterations it would take to reach an even whole cent. I inherited an application that was supposedly doing this, but it's not working at all. Is there any direction someone can point me in? I apologize if this is beyond simple. I am just blanking out. In our app, it was doing something like this:
$integerPayout = (int)floor($payout * 10000);
$count = 1;
$modAmount = 100;
while(($integerPayout * $count) % $modAmount != 0)
$count += 1;
echo $count;
lcm(100, (int)($payout * 100)) / (int)($payout * 100)

Calculate average without being thrown by strays

I am trying to calculate an average without being thrown off by a small set of far off numbers (ie, 1,2,1,2,3,4,50) the single 50 will throw off the entire average.
If I have a list of numbers like so:
19,20,21,21,22,30,60,60
The average is 31
The median is 30
The mode is 21 & 60 (averaged to 40.5)
But anyone can see that the majority is in the range 19-22 (5 in, 3 out) and if you get the average of just the major range it's 20.6 (a big difference than any of the numbers above)
I am thinking that you can get this like so:
c+d-r
Where c is the count of a numbers, d is the distinct values, and r is the range. Then you can apply this to all the possble ranges, and the highest score is the omptimal range to get an average from.
For example 19,20,21,21,22 would be 5 numbers, 4 distinct values, and the range is 3 (22 - 19). If you plug this into my equation you get 5+4-3=6
If you applied this to the entire number list it would be 8+6-41=-27
I think this works pretty good, but I have to create a huge loop to test against all possible ranges. In just my small example there are 21 possible ranges:
19-19, 19-20, 19-21, 19-22, 19-30, 19-60, 20-20, 20-21, 20-22, 20-30, 20-60, 21-21, 21-22, 21-30, 21-60, 22-22, 22-30, 22-60, 30-30, 30-60, 60-60
I am wondering if there is a more efficient way to get an average like this.
Or if someone has a better algorithm all together?
You might get some use out of standard deviation here, which basically measures how concentrated the data points are. You can define an outlier as anything more than 1 standard deviation (or whatever other number suits you) from the average, throw them out, and calculate a new average that doesn't include them.
Here's a pretty naive implementation that you could fix up for your own needs. I purposely kept it pretty verbose. It's based on the five-number-summary often used to figure these things out.
function get_median($arr) {
sort($arr);
$c = count($arr) - 1;
if ($c%2) {
$b = round($c/2);
$a = $b-1;
return ($arr[$b] + $arr[$a]) / 2 ;
} else {
return $arr[($c/2)];
}
}
function get_five_number_summary($arr) {
sort($arr);
$c = count($arr) - 1;
$fns = array();
if ($c%2) {
$b = round($c/2);
$a = $b-1;
$lower_quartile = array_slice($arr, 1, $a-1);
$upper_quartile = array_slice($arr, $b+1, count($lower_quartile));
$fns = array($arr[0], get_median($lower_quartile), get_median($arr), get_median($upper_quartile), $arr[$c-1]);
return $fns;
}
else {
$b = round($c/2);
$a = $b-1;
$lower_quartile = array_slice($arr, 1, $a);
$upper_quartile = array_slice($arr, $b+1, count($lower_quartile));
$fns = array($arr[0], get_median($lower_quartile), get_median($arr), get_median($upper_quartile), $arr[$c-1]);
return $fns;
}
}
function find_outliers($arr) {
$fns = get_five_number_summary($arr);
$interquartile_range = $fns[3] - $fns[1];
$low = $fns[1] - $interquartile_range;
$high = $fns[3] + $interquartile_range;
foreach ($arr as $v) {
if ($v > $high || $v < $low)
echo "$v is an outlier<br>";
}
}
//$numbers = array( 19,20,21,21,22,30,60 ); // 60 is an outlier
$numbers = array( 1,230,239,331,340,800); // 1 is an outlier, 800 is an outlier
find_outliers($numbers);
Note that this method, albeit much simpler to implement than standard deviation, will not find the two 60 outliers in your example, but it works pretty well. Use the code for whatever, hopefully it's useful!
To see how the algorithm works and how I implemented it, go to: http://www.mathwords.com/o/outlier.htm
This, of course, doesn't calculate the final average, but it's kind of trivial after you run find_outliers() :P
Why don't you use the median? It's not 30, it's 21.5.
You could put the values into an array, sort the array, and then find the median, which is usually a better number than the average anyway because it discounts outliers automatically, giving them no more weight than any other number.
You might sort your numbers, choose your preferred subrange (e.g., the middle 90%), and take the mean of that.
There is no one true answer to your question, because there are always going to be distributions that will give you a funny answer (e.g., consider a biased bi-modal distribution). This is why may statistics are often presented using box-and-whisker diagrams showing mean, median, quartiles, and outliers.

Categories