unexpected php math decimals operation - php

$nt=(float) number_format("26031.87",2,".",""); // 26031.87
$nt2=(float) 546669.02-520637.15; // 26031.87
if($nt>$nt2)
echo "$nt / $nt2 ⇽ What's wrong with this!? :#";
the point is why this happen?, if visually looks the same, a chunky solution is doing number_format() to $nt2, but... WHY??
updating :: $nt-$nt2 outputs 3.6379788070917E-12

http://php.net/manual/en/language.types.float.php see that big red warning banner. :)
For comparing floats you can use:
if (abs($nt1-$nt2) < 0.00001) {
echo "Equal!";
}
(change 0.00001 to comparison precision you need).

Per Zend:
PHP doesn't seem to do the logical thing when comparing two floats, and this is due to the internal representation of the numbers. The solution is simply never compare floats for equality!
Convert them to INT before comparing them or use bc_math.

Related

Is this floating point behavior or a bug in PHP?

CLARIFYING: This isn't asking why I'm getting rounding errors. I understand this is a mistake or an oversight. The question asks why it prints as whole in the first var_dump, but casting acts as if it were 57916.9repeating and truncates said .9repeating.
The following occurs:
You take a string (or float -- does not matter) that contains the value 579.17 and multiply it 100. It var_dumps the expected 57917. Not 57916.99999999999999999999999 or similar. var_dump should not be rounding anything as a debugging function in my opinion. It may have to truncate, but rounding is unexpected in a debugging function.
However, if one then casts that to an integer, you get an unexpected 57916 from var_dump.
I'm aware of issues with floating point numbers, but the act of casting a floating point number that prints as exactly 57917 in PHP apparently effectively subtracts 1. This is a very small number.
This only appears to happen for some numbers, such as 579.17. It does not occur for others I've tested. All we're doing is multiplying a number by 100 to send to an API that expects cents. The API library understandably casts to integer since the API doesn't accept fractional cents.
Test case:
php -r '$n = ("579.17" * 100); var_dump($n, (int)$n);'
Output:
float(57917)
int(57916)
Environment:
x86-32,
x86-64 both.
var_dump uses precision from php.ini to display float value. You could raise it to see what happens.
php -r 'ini_set("precision", 20); $n = ("579.17" * 100); var_dump($n, (int)$n);'
// double(57916.999999999992724)
// int(57916)
Also. There is no matter x86 or x64. PHP uses 64 bits for floats.
http://php.net/manual/en/language.types.float.php
Use round() instead of int(). The actual value of 579.17 * 100 is something like 57916.99999. var_dump() shows this as 57917, but when you use int() it truncates the fraction. Using round() will go to the nearest integer, rather than always truncating down.
I believe this is because hardware cannot truly and accurately express floating point numbers. So what appears as 579.17 is actually more like 579.16999999. So when you multiply it and cast it as an int it truncates the decimal leaving you with 57916.

PHP float calculation error when subtracting

I have a very strange issue. If I subtract 2 float vars where one is the result of a mathematical operation I get a wrong value.
Example:
var_dump($remaining);
var_dump($this->hours_sub['personal']);
echo $remaining-$this->hours_sub['personal'];
This it the output:
float 5.4
float 1.4
5.3290705182008E-15
5.4-1.4 should be 4
If I add the two values the result is correct.
Where is my mistake?
It can not be a rounding issue.
If still somebody hits this page with similar problems where floating number subtraction causes error or strange values.
Below I will explain this problem with a bit more details.
It is not directly related to PHP and it is not a bug.
However, every programmer should be aware of this issue.
This problem even took many lives two decades ago.
On 25 February 1991 an incorrect floating-point arithmetic (called rounding error) in a MIM-104 Patriot missile battery prevented it from intercepting an incoming Scud missile in Dhahran, Saudi Arabia, killing 28 soldiers and injuring near 100 servicemen from the U.S. Army's 14th Quartermaster Detachment.
But why it happens?
The reason is that floating point values represent a limited precision. So, a value might
not have the same string representation after any processing (chopped off). It also
includes writing a floating point value in your script and directly
printing it without any mathematical operations.
Just a simple example:
$a = '36';
$b = '-35.99';
echo ($a + $b);
You would expect it to print 0.01, right?
But it will print a very strange answer like 0.009999999999998
Like other numbers, floating point numbers double or float is stored in memory as a string of 0's and 1's. How floating point differs from integer is in how we interpret the 0's and 1's when we want to look at them. There are many standards how they are stored.
Floating-point numbers are typically packed into a computer datum as the sign bit, the exponent field, and the significand or mantissa, from left to right....
Decimal numbers are not well represented in binary due to lack of enough space. So, you can't express 1/3 exactly as it's 0.3333333..., right? Why we can't represent 0.01 as a binary float number is for the same reason. 1/100 is 0.00000010100011110101110000..... with a repeating 10100011110101110000.
If 0.01 is kept in simplified and system-truncated form of 01000111101011100001010 in binary, when it is translated back to decimal, it would be read like 0.0099999.... depending on system (64bit computers will give you much better precision than 32-bits). Operating system decides in this case whether to print it as it sees or how to make it in more human-readable way. So, it is machine-dependent how they want to represent it. But it can be protected in language level with different methods.
If you format the result using
echo number_format(0.009999999999998, 2);
it will print 0.01.
It is because in this case you instruct how it should be read and how precision you require.
Note number_format() is not the only function, a few other functions and ways can be used to tell the programming language about the precision expectation.
References:
https://sdqweb.ipd.kit.edu/publications/pdfs/saglam2016a.pdf
https://en.wikipedia.org/wiki/Round-off_error
This worked for me:
<?php
$a = 96.35;
$b = 96.01;
$c = ( ( floor($a * 100) - floor($b * 100) ) / 100 );
echo $c; // should see 0.34 exactly instead of 0.33999999999999
?>
Since the problem occurs with floating point subtraction operation I decided to eliminate that by transforming it into an integer operation, then backing up the result into a floating point again.
I much prefer that solution because basically it does prevent the error on calculation rather than rouding up the result with other functions.
In addition to using number_format(), there are three other ways to obtain the correct result. One involves doing a little math, as follows:
<?php
$a = '36';
$b = '-35.99';
$a *= 100;
$b *= 100;
echo (($a + $b)/100),"\n";
See demo
Or, you could simply use printf():
<?php
$a = '36';
$b = '-35.99';
printf("\n%.2f",($a+$b));
See demo
Note, without the precision specifier, the printf() result will contain trailing zero decimals, as follows: 0.010000
You also could also utilize the BC Math function bcadd(), as follows:
<?php
$a = '36';
$b = '-35.99';
echo "\n",bcadd($a,$b,2);
See demo
I wrote a simple function to deal with this.
It works similarly to the bcadd function from the bcmath extension of php.
You pass it 2 decimal numbers in string form, $a and $b, and specify how many decimals should be used which must match the number of decimals in both $a and $b.
As you can see it will use integers to do the math, then convert back to string without using floating point operations at any point.
function decimalAdd($a,$b,$numDecimals=2) {
$intSum=(int)str_replace(".","",$a)+(int)str_replace(".","",$b);
$paddedIntSum=str_pad(abs($intSum),$numDecimals,0,STR_PAD_LEFT);
$result=($intSum<0?"-":"").($intSum<100&&$intSum>-100?"0":"").substr_replace($paddedIntSum,".",-$numDecimals,0);
return $result;
}
Sample usage:
echo decimalAdd("36.00","-35.99");
0.01

php sprintf displaying wrong number

I'm having a weird problem where PHP's sprintf seems to be changing some numbers. This doesn't happen all the time, just occasionally.
The following code:
echo sprintf('%04d',$product['priceUSD']*100)."(".($product['priceUSD']*100).")";
generates the following output for a $19.99 product: 1998(1999)
I can work around this, but I'd love to know why it is doing it, and if there's any method to the apparent madness.
Update:
It looks like it's happening when converting from float to int. The following gives the same output:
echo (int)($product['priceUSD']*100)."(".($product['priceUSD']*100).")";
echo sprintf('%.2f',$product['priceUSD']*100)."(".sprintf('%.2f',$product['priceUSD']*100).")";
What number format are you looking for?
First off: %d is kinda like an (int) cast.
19.99 = 1.99899999999999984368059813278E1 = 0x4033FD70A3D70A3D
in IEEE 64 Bit.
if we multiply that in floating point with 100 we get 1998.99999999999984368059813278E1 casted to int is 1998.
"19.99 is just one of those numbers..." (see #Dragons Link)
for exact results use bcmath extension:
echo sprintf('%4d', bcmul ($price,100));
To stabilize your multiplication while facing floating point arithmetic problems, leverage the bcmul() function to multiply the two numbers.
Secondarily, I should mention that printf() will perform rounding, but (int) will not.
Code: (Demo)
$product['priceUSD'] = '19.99';
printf('%04d', bcmul($product['priceUSD'], 100));
Output:
1999

Floor function not working

Given the following cod:
$number = 1050.55;
var_dump($number - floor($number));
Why does the above code returns the following result?
float(0.54999999999995)
I want a fixed value like 0.55 in this case. Can you help me please?
Floating point operations are not precise and the remainder errors are common.
If you know, what is your desired precission (eg. two digits after the dot), you can use round() function on the result.
In this case this will be:
$number = 1050.55;
var_dump(round($number - floor($number), 2));
For most floats, binary can only approximately represent the correct number. The rule is to perform floor(), ceil() or fmod() last in a series of calculations. At least only do integer math after you use them. If you cast an int to a float, as in your code, then floor() is not going to behave has you expect.
Use printf() when printing floats. Its conversion routines usually do a much better job and give you the answer you expect when truncating floats.
EDIT: Or, to be more exact, printf() works on the decimal character representation of the number when deciding where to truncate so you don't get any weird, unspecified, binary/decimal conversion artifacts.
See this question. While that is about java and you're asking about PHP the math is the same.

php - why does floor round down a integer?

I am confused as to why:
echo log10(238328) / log10(62);
results in 3
but
echo floor(log10(238328) / log10(62));
results in 2
I know floor rounds down but I thought it was only for decimal numbers.
How can I get an answer of 3 out of the latter statment whilst still normally rounding down?
PHP uses double-precision floating point numbers. Neither of the results of the two logarithms can be represented exactly, so the result of dividing them is not exact. The result you get is close to, but slightly less than 3. This gets rounded to 3 when being formatted by echo. floor, however returns 2.
You can avoid the inexact division by taking advantage of the fact that log(x, b) / log(y, b) is equivalent to log(x, y) (for any base b). This gives you the the expression log(238328, 62) instead, which has a floating point result of exactly 3 (the correct result since 238328 is pow(62, 3)).
It's due to the way floating point numbers are polished in PHP.
See the PHP Manual's Floating Point Numbers entry for more info
A workaround is to floor(round($value, 15));. Doing this will ensure that your number is polished quite accurately.
If you var_dump you'll see that the "3" is actually a float. Which means its probably close to 3 and rounded up. If you wanted 3, you would have to use the sister function, ceil.
You might get better results using the round() function and/or explicitly casting it to an int rather than relying on ceil(). Look here for more information: http://php.net/manual/en/language.types.integer.php
At the cost of a little performance, you could coerce it, reducing the precision to a more useful range by rounding or string formatting the number:
echo floor(round(log10(238328)/log10(62), 4));
echo floor(sprintf('%.4f', log10(238328)/log10(62)));
// output:
// 3
// 3
You should go with the minimum precision that you need. More precision is not what you want. Rounding without flooring might be more correct, the results are different depending on precision.
echo floor(round(log10(238328)/log10(62), 16));
echo round(log10(238328)/log10(62), 16);
// output:
// 2
// 3
there three functions for doing nearly the same:
ceil --> ceil(0.2)==1 && ceil(0.8)==1
floor --> floor(0.2)==0 && floor(0.8)==0
round --> round(0.2)==0 && round(0.8)==1

Categories