My platform uses AJAX to make communication with internal structure (API's and others). All AJAX requests are sent to a single file called globalAPI.php (POST Method) and there he communicates with other php files (this was done to hide the internal structure).
Assuming a user discovered how it works and make a request starting from his server. We can conclude that it would generate results without even being logged in my platform.
So how can you protect this file to external access?
I believe I could use a .htaccess file with Allow from 127.0.0.1, but what if the user change his ip to 127.0.0.1, he would have access to this file?
Have another way to protect this file?
You should implement an authentication system in all your API calls if you want to restrict their access.
Basically, you cannot prevent a user from opening the Network tab from the Devtools and watching the requests that your client makes to the server API: an advanced user can see the parameters sent at each request and resend the request with the same or different parameters.
If this file is accessible through AJAX, it is accessible for the client anyway: what you have to do is make sure that the user cannot access more things than the AJAX calls allow him. To do that, secure your API, e.g. requesting a user token for every call: the server would know which user accesses the API and you can handle authorization from that point.
I am using django as backend API and ajax for making api call.my main site runs on https but the api on http . i am unable to make api calls from ssl cert loaded onto ngnix.
is it possible to make ajax calls from https to http ?
any leads will be appreciated ?
thnks in advance ..!!
The only difference between HTTP and HTTPS is the SSL security part, if your server is able to handle HTTPS requests they will be send through to the API just like any other HTTP request, it's only the actual data communication from the client socket to the server socket that is affected, once the data is received it's back in plain text (or it's original format) again.
Your browser will stop this and/or give an insecure warning and a padlock symbol for your HTTPS connection.
HTTPS indicates the site is secure, which gives certain guarantees to the visitor - namely that the site is for the given domain (authentication), that it's not been intercepted and changed (integrity) and that no one else is able to listen in to your messages to and from the server (confidentiality).
When you add an insecure resource like an api call, those guarantees are no longer there and so the browser will give a "insecure" warning, typically with a yellow warning padlock (instead of green) and/or a pop up.
Browsers used to differentiate between inactive content (e.g. images) - which were seen as less of a risk and so allowed, and active content (e.g. JavaScript) - which were potentially dangerous and so not allowed, however don't think they do any more. Even if they did Ajax XHR calls are definitely in the latter category.
Best option is to proxy pass the request through your main site domain through Nginx (e.g. forward requests to https://example.com/api from Nginx to your api using Nginx config).
I've read a lot of questions here about how login can be connected to SSL and so on, but still the idea is not that clear. Based on what I read that I need to have an SSL setup and installed on my web server so that I can use the https secure connection on the page where a login is going to be used. Ok, I have done that part,but still wondering what to include in the login code in order to have the entire session must be over https. in some sites they mention that I have to add this code tep_href_link(FILENAME_ACCOUNT, '', 'SSL') so that the php login page or code be secure.
any comments will be appreciated.
Thanks a lot.
Update: I believe that this code is very important to add so that the login page goes on the https. if(!isset($_SERVER['HTTPS']))
{
header("location: https://" . $_SERVER['SERVER_NAME'] . $_SERVER['REQUEST_URI']);
}
HTTPS represents using an algorithm to secure transport layer communications that encrypts what the browser and server are sending each other. The encrypted form that is sent over the network is expensive computationally to turn back into it's original content, unless whoever is decrypting the ciphertext has the paired private key (or... a "computationally weak" algorithm was used).
This is point to point (client sends request to server, server accepts, determines response, sends response), so the browser and server first exchange public keys that represent what the data you are sending or receiving is going to be "scrambled" against. A private key is held by the public key issuer that allows that computer to "descramble" and obtain the original content that was sent to the receiver.
So when you create a private/public key pair, the private key is kept (in confidence and secret) on the server, and the related public key is sent to the browser. The browser, likewise, does the same thing and transmits a public key to the server.
"Protecting" sensitive information is not all that's going on; you may also use SSL/TLS to prevent tampering with data, for example, or even as an additional verification step.
To get HTTPS setup and available for you to use, you need to:
Procure a public/private key (signing by a certificate authority, or CA, is potentially optional depending on your end users).
Install it into the key store on the server that is available to your web server. OpenSSL is used for both of these steps in many cases.
Setup your system to use HTTPS URLs (for all resources, not just a <form action="https://...">s).
Couple of notes:
Browsers have their own certificates, so don't worry about that.
Many CMS' and frameworks allow you to specify HTTPS at the application layer
You can use WireShark to inspect what your computer is actually sending and receiving. This can be very illuminating, especially in combination with viewing the request/response in Firebug or Chrome Net consoles.
PHP online manual has the OpenSSL "book". Here is an example of how CodeIgniter handles configuring HTTPS at the application level.
There's various tutorials on how to setup SSL on a LAMP stack. Here is a tutorial on WAMP2 HTTPS and SSL Setup if you just need a development environment.
If you have a shared hosting environment, you may not be able to do the SSL setup on the server yourself; that may be handled by the server administrator. Check with your host. DreamHost, for example, has extensive docs.
Um, on a quick google, this function (tep_href_link) appears to be part of osCommerce. If your site has an SSL certificate setup properly, forcing users to an https url should be fine. If you don't know how to do that look into Location headers or mod_rewrite.
Also, as an aside, one thing you will need to do, is to ensure all links on the page are going over https. That will increase the likelihood of getting the green lock or w/e when a user comes to the page, assuming the cert isn't self-signed.
How would you use https ?, would sending information via GET and POST be any different while using https ?
Any information and examples on how https is used in php for something simple like a secure login would be useful,
Thank you!
It will be no different for your php scripts, the encryption and decryption is done transparently on another layer.
Both GET and POST get encrypted, but GET will leave a trace in the web server log files.
HTTPS is handled at the SSL/TLS Layer, not at the Application Layer (HTTP). Your server will handle it as aularon was saying.
SSL and/or HTTPS is used to provide some level of confidentiality for data in transit between the web users and the web server. It can also be used to provide a level of confidence that the site the users are communicating with is in fact the one they intend to be.
In order to use SSL, you'll need to configure these capabilities on the server itself, which would include either purchasing (an authority-signed) or creating (a self-signed) certificate. If you create your own self-signed certificate, the level of confidence that the site is the intended one is significantly reduced for your users.
PHP
Once your webserver is able to serve SSL-protected pages, PHP will continue to operate as usual. Things to look out for are port numbers (normal HTTP is usually on port 80, while HTTPS traffic is usually on port 443), if your code relies on them.
GET & POST Data
Pierre 303 is correct, GET data may end up in the logs, and POST data will not, but this is no different than a non-SSL web server. SSL is meant to protect data in transit, it does nothing to protect you and your customers from web servers and their administrators that you may not trust.
Secure Login
There is also a performance hit (normally) when using SSL, so, some sites will configure their pages to only use https when the user is sending sensitive information, for example, their password or credit card details, etc. Other traffic would continue to use the normal, http server.
If this is the sort of thing you'd like to do, you'll want to ensure that your login form in HTML uses a ACTION that points to the https server's pages. Once the server accepts this form submission, it can send a redirect to send the user back to the page they requested using just http again.
Just ensure you're sending the correct headings when allowing files to be downloaded over ssl... IE can be a bit quirky. http://support.microsoft.com/kb/323308 for details of how to resolve
I know next to nothing when it comes to the how and why of https connections. Obviously, when I'm transmitting secure data like passwords or especially credit card information, https is a critical tool. What do I need to know about it, though? What are the most common mistakes you see developers making when they implement it in their projects? Are there times when https is just a bad idea? Thanks!
An HTTPS, or Secure Sockets Layer (SSL) certificate is served for a site, and is typically signed by a Certificate Authority (CA), which is effectively a trusted 3rd party that verifies some basic details about your site, and certifies it for use in browsers. If your browser trusts the CA, then it trusts any certificates signed by that CA (this is known as the trust chain).
Each HTTP (or HTTPS) request consists of two parts: a request, and a response. When you request something through HTTPS, there are actually a few things happening in the background:
The client (browser) does a "handshake", where it requests the server's public key and identification.
At this point, the browser can check for validity (does the site name match? is the date range current? is it signed by a CA it trusts?). It can even contact the CA and make sure the certificate is valid.
The client creates a new pre-master secret, which is encrypted using the servers's public key (so only the server can decrypt it) and sent to the server
The server and client both use this pre-master secret to generate the master secret, which is then used to create a symmetric session key for the actual data exchange
Both sides send a message saying they're done the handshake
The server then processes the request normally, and then encrypts the response using the session key
If the connection is kept open, the same symmetric key will be used for each.
If a new connection is established, and both sides still have the master secret, new session keys can be generated in an 'abbreviated handshake'. Typically a browser will store a master secret until it's closed, while a server will store it for a few minutes or several hours (depending on configuration).
For more on the length of sessions see How long does an HTTPS symmetric key last?
Certificates and Hostnames
Certificates are assigned a Common Name (CN), which for HTTPS is the domain name. The CN has to match exactly, eg, a certificate with a CN of "example.com" will NOT match the domain "www.example.com", and users will get a warning in their browser.
Before SNI, it was not possible to host multiple domain names on one IP. Because the certificate is fetched before the client even sends the actual HTTP request, and the HTTP request contains the Host: header line that tells the server what URL to use, there is no way for the server to know what certificate to serve for a given request. SNI adds the hostname to part of the TLS handshake, and so as long as it's supported on both client and server (and in 2015, it is widely supported) then the server can choose the correct certificate.
Even without SNI, one way to serve multiple hostnames is with certificates that include Subject Alternative Names (SANs), which are essentially additional domains the certificate is valid for. Google uses a single certificate to secure many of it's sites, for example.
Another way is to use wildcard certificates. It is possible to get a certificate like ".example.com" in which case "www.example.com" and "foo.example.com" will both be valid for that certificate. However, note that "example.com" does not match ".example.com", and neither does "foo.bar.example.com". If you use "www.example.com" for your certificate, you should redirect anyone at "example.com" to the "www." site. If they request https://example.com, unless you host it on a separate IP and have two certificates, the will get a certificate error.
Of course, you can mix both wildcard and SANs (as long as your CA lets you do this) and get a certificate for both "example.com" and with SANs ".example.com", "example.net", and ".example.net", for example.
Forms
Strictly speaking, if you are submitting a form, it doesn't matter if the form page itself is not encrypted, as long as the submit URL goes to an https:// URL. In reality, users have been trained (at least in theory) not to submit pages unless they see the little "lock icon", so even the form itself should be served via HTTPS to get this.
Traffic and Server Load
HTTPS traffic is much bigger than its equivalent HTTP traffic (due to encryption and certificate overhead), and it also puts a bigger strain on the server (encrypting and decrypting). If you have a heavily-loaded server, it may be desirable to be very selective about what content is served using HTTPS.
Best Practices
If you're not just using HTTPS for the entire site, it should automatically redirect to HTTPS as required. Whenever a user is logged in, they should be using HTTPS, and if you're using session cookies, the cookie should have the secure flag set. This prevents interception of the session cookie, which is especially important given the popularity of open (unencrypted) wifi networks.
Any resources on the page should come from the same scheme being used for the page. If you try to fetch images from http:// when the page is loaded with HTTPS, the user will get security warnings. You should either use fully-qualified URLs, or another easy way is to use absolute URLs that do not include the hostname (eg, src="/images/foo.png") because they work for both.
This includes external resources (eg, Google Analytics)
Don't do POSTs (form submits) when changing from HTTPS to HTTP. Most browsers will flag this as a security warning.
I'm not going to go in depth on SSL in general, gregmac did a great job on that, see below ;-).
However, some of the most common (and critical) mistakes made (not specifically PHP) with regards to use of SSL/TLS:
Allowing HTTP when you should be enforcing HTTPS
Retrieving some resources over HTTP from an HTTPS page (e.g. images, IFRAMEs, etc)
Directing to HTTP page from HTTPS page unintentionally - note that this includes "fake" pages, such as "about:blank" (I've seen this used as IFRAME placeholders), this will needlessly and unpleasantly popup a warning.
Web server configured to support old, unsecure versions of SSL (e.g. SSL v2 is common, yet horribly broken)
(okay, this isn't exactly the programmer's issue, but sometimes noone else will handle it...)
Web server configured to support unsecure cipher suites (I've seen NULL ciphers only in use, which basically provides absolutely NO encryption)
(ditto)
Self-signed certificates - prevents users from verifying the site's identity.
Requesting the user's credentials from an HTTP page, even if submitting to an HTTPS page. Again, this prevents a user from validating the server's identity BEFORE giving it his password... Even if the password is transmitted encrypted, the user has no way of knowing if he's on a bogus site - or even if it WILL be encrypted.
Non-secure cookie - security-related cookies (such as sessionId, authentication token, access token, etc.) MUST be set with the "secure" attribute set. This is important! If it's not set to secure, the security cookie, e.g. SessionId, can be transmitted over HTTP (!) - and attackers can ensure this will happen - and thus allowing session hijacking etc. While you're at it (tho this is not directly related), set the HttpOnly attribute on your cookies, too (helps mitigate some XSS).
Overly permissive certificates - say you have several subdomains, but not all of them are at the same trust level. For instance, you have www.yourdomain.com, dowload.yourdomain.com, and publicaccess.yourdomain.com. So you might think about going with a wildcard certificate.... BUT you also have secure.yourdomain.com, or finance.yourdomain.com - even on a different server. publicaccess.yourdomain.com will then be able to impersonate secure.yourdomain.com....
While there may be instances where this is okay, usually you'd want some separation of privileges...
That's all I can remember right now, might re-edit it later...
As far as when is it a BAD idea to use SSL/TLS - if you have public information which is NOT intended for a specific audience (either a single user or registered members), AND you're not particular about them retrieving it specifically from the proper source (e.g. stock ticker values MUST come from an authenticated source...) - then there is no real reason to incur the overhead (and not just performance... dev/test/cert/etc).
However, if you have shared resources (e.g. same server) between your site and another MORE SENSITIVE site, then the more sensitive site should be setting the rules here.
Also, passwords (and other credentials), credit card info, etc should ALWAYS be over SSL/TLS.
Be sure that, when on an HTTPS page, all elements on the page come from an HTTPS address. This means that elements should have relative paths (e.g. "/images/banner.jpg") so that the protocol is inherited, or that you need to do a check on every page to find the protocol, and use that for all elements.
NB: This includes all outside resources (like Google Analytics javascript files)!
The only down-side I can think of is that it adds (nearly negligible) processing time for the browser and your server. I would suggest encrypting only the transfers that need to be.
I would say the most common mistakes when working with an SSL-enabled site are
The site erroneously redirects users to http from a page as https
The site doesn't automatically switch to https when it's necessary
Images and other assets on an https page are being loading via http, which will trigger a security alert from the browser. Make sure all assets are using fully-qualified URIs that specify https.
The security certificate only works for one subdomain (such as www) but your site actually uses multiple subdomains. Make sure to get a wildcard certificate if you will need it.
I would suggest any time any user data is stored in a database and communicated, use https. Consider this requirement even if the user data is mundane, because even many of these mundane details are used by that user to identify themselves on other websites. Consider all the random security questions your bank asks you (like what street do you live on?). This can be taken from address fields really easily. In this case, the data is not what you consider a password, but it might as well be. Furthermore, you can never anticipate what user data will be used for a security question elsewhere. You can also expect that with the intelligence of the average web user (think your grandmother) that that tidbit of information might make up part of that user's password somewhere else.
One pointer if you use https
make it so that if the user types
http://www.website-that-needs-https.com/etc/yadda.php
they will automatically get redirected to
https://www.website-that-needs-https.com/etc/yadda.php
(personal pet peeve)
However, if you're just doing a plain html webpage, that will be essentially a one-way transmission of information from the server to the user, don't worry about it.
All very good tip here... but I just want to add something..
Ive seen some sites that gives you a http login page and only redirect you to https after you post your username/pass.. This means the username is transmitted in the clear before the https connection is established..
In short make the page where you login from ssl, instead of posting to an ssl page.
I found that trying to <link> to a non-existent style sheet also caused security warnings. When I used the correct path, the lock icon appeared.