How to scale mysql tables for growth - php

So I'm working on site that will replace an older site with a lot of traffic, and I will also have a lot of data in the DB, so my question to you guys is what is the best way to design mysql tables for growth?
I was thinking to split let's say a table with 5 000 000 rows in 5 tables,with 1 000 000 rows/table and create a relationship between the tables, but I guess this isn't a good option since I will spend a lot of resources and time to figure out in what table my data is.
Or can you guys give me some tips mabe some useful articles?

No, you're absolutely right on the relationships. This technique is called Normalization where you define separate tables because these individual tables are affected with time and independent of other tables.
So if you have a hotel database that keeps a track of rooms and guests, then you know normalization is necessary because rooms and guests are independent of each other.
But you will have foreign keys/surrogate keys in each table (for instance, room_id) that could relate the particular guest entering for that particular room.
Normalization, in your case, could help you optimize that 5000 rows of yours as it would not be optimal for a loop to go over 5000 elements and retrieve an entire data.
Here is a strong example for why normalization is essential in database management.

Partitioning as mentioned in a comment is one way to go, but the first path to check out is even determining if you can break down the tables with the large amounts of data into workable chunks based on some internal data.
For instance, lets say you have a huge table of contacts. You can essentially break down the data into contacts that start from a-d, e-j, etc. Then when you go to add records you just make sure you add the records to the correct table (I'd suggest checking out stored procedures for handling this, so that logic is regulated in the database). You'd also probably set up stored procedures to also get data from the same tables. By doing this however, you have to realize that using auto-incrementing IDs won't work correctly as you won't be able to maintain unique IDs across all of the tables without doing some work yourself.
These of course are the simple solutions. There are tons of solutions for large data sets which also includes looking at other storage solutions, clustering, partitioning, etc. Doing some of these things manually yourself can give you a little bit of an understanding on some of the possibly "manual solutions".

Related

MySQL table separation for virtually same data but different user groups

First of all, I apologize if a similar question has been asked and answered. I searched and found similar questions, but not one quite close enough.
My question is basically whether or not it is a good idea to separate tables of virtually the same data in my particular circumstance. The tables track data track data for two very different groups (product licensing data for individual users and product licensing data for enterprise users). I am thinking of separating them into two tables so that the user verification process runs faster (especially for individual users since the number of records is significantly lower (eg ~500 individual records vs ~10,000 enterprise records)). Lastly, there is a significant difference in the user types that isn't apparent in the table structure - individual users all have a fixed number of activations while enterprise users may have up to unlimited activations and the purpose of tracking is more for activation stats.
The reason I think separating the tables would be a good idea is because each table would be smaller, resulting in faster queries (at least I think it would...). On the other hand, I will have to do two queries to obtain analytical data. Additionally, I may wish to change the data I am tracking from time to time and obviously, this is more of a pain with two duplicate tables.
I am guessing the query time difference is probably insignificant, even with tens of thousands of records?? However, I would like to hear peoples' thoughts on this (mainly regarding efficiency and overall best practices) if they would be so kind to share.
Thanks in advance!
When designing your database structure you should try to normalize your data as much as possible. So to answer your question
"whether or not it is a good idea to separate tables of virtually the same data in my particular circumstance."
If you normalize your database correctly, the answer is no, it's not a good idea to create two tables with almost identical information. With normalization you should be able to separate out similar data into mapping tables which will allow you to create more complex queries that will run faster.
A very basic example of a first normal form normalization would be you have a table of users, and in the table you have a column for role. Instead of having the physical word "admin" or "member" you have an id that is mapped to another table called roles where 1 = admin and 2 = member. The idea is it is more efficient to store repeated ids rather then repeated words like admin and member.

Which is faster in SQL: many Many MANY tables vs one huge table?

I am in the process of creating a website where I need to have the activity for a user (similar to your inbox in stackoverflow) stored in sql. Currently, my teammates and I are arguing over the most effective way to do this; so far, we have come up with two alternate ways to do this:
Create a new table for each user and have the table name be theirusername_activity. Then when I need to get their activity (posting, being commented on, etc.) I simply get that table and see the rows in it...
In the end I will have a TON of tables
Possibly Faster
Have one huge table called activity, with an extra field for their username; when I want to get their activity I simply get the rows from that table "...WHERE username=".$loggedInUser
Less tables, cleaner
(assuming I index the tables correctly, will this still be slower?)
Any alternate methods would also be appreciated
"Create a new table for each user ... In the end I will have a TON of tables"
That is never a good way to use relational databases.
SQL databases can cope perfectly well with millions of rows (and more), even on commodity hardware. As you have already mentioned, you will obviously need usable indexes to cover all the possible queries that will be performed on this table.
Number 1 is just plain crazy. Can you imagine going to manage it, and seeing all those tables.
Can you imagine the backup! Or the dump! That many create tables... that would be crazy.
Get you a good index, and you will have no problem sorting through records.
here we talk about MySQL. So why would it be faster to make separate tables?
query cache efficiency, each insert from one user would'nt empty the query cache for others
Memory & pagination, used tables would fit in buffers, unsued data would easily not be loaded there
But as everybody here said is semms quite crazy, in term of management. But in term of performances having a lot of tables will add another problem in mySQL, you'll maybe run our of file descriptors or simply wipe out your table cache.
It may be more important here to choose the right engine, like MyIsam instead of Innodb as this is an insert-only table. And as #RC said a good partitionning policy would fix the memory & pagination problem by avoiding the load of rarely used data in active memory buffers. This should be done with an intelligent application design as well, where you avoid the load of all the activity history by default, if you reduce it to recent activity and restrict the complete history table parsing to batch processes and advanced screens you'll get a nice effect with the partitionning. You can even try a user-based partitioning policy.
For the query cache efficiency, you'll have a bigger gain by using an application level cache (like memcache) with history-per-user elements saved there and by emptying it at each new insert .
You want the second option, and you add the userId (and possibly a seperate table for userid, username etc etc).
If you do a lookup on that id on an properly indexed field you'd only need something like log(n) steps to find your rows. This is hardly anything at all. It will be way faster, way clearer and way better then option 1. option 1 is just silly.
In some cases, the first option is, in spite of not being strictly "the relational way", slightly better, because it makes it simpler to shard your database across multiple servers as you grow. (Doing this is precisely what allows wordpress.com to scale to millions of blogs.)
The key is to only do this with tables that are entirely independent from a user to the next -- i.e. never queried together.
In your case, option 2 makes the most case: you'll almost certainly want to query the activity across all or some users at some point.
Use option 2, and not only index the username column, but partition (consider a hash partition) on that column as well. Partitioning on username will provide you some of the same benefits as the first option and allow you to keep your sanity. Partitioning and indexing the column this way will provide a very fast and efficient means of accessing data based on the username/user_key. When querying a partitioned table, the SQL Engine can immediately lop off partitions it doesn't need to scan as it can tell based off of the username value queried vs. the ability of that username to reside within a partition. (in this case only one partition could contain records tied to that user) If you have a need to shard the table across multiple servers in the future, partitioning doesn't hinder that ability.
You will also want to normalize the table by separating the username field (and any other elements in the table related to username) into its own table with a user_key. Ensure a primary key on the user_key field in the username table.
This majorly depends now on where you need to retrieve the values. If its a page for single user, then use first approach. If you are showing data of all users, you should use single table. Using multiple table approach is also clean but in sql if the number of records in a single table are very high, the data retrieval is very slow

MySQL many tables or few tables

I'm building a very large website currently it uses around 13 tables and by the time it's done it should be about 20.
I came up with an idea to change the preferences table to use ID, Key, Value instead of many columns however I have recently thought I could also store other data inside the table.
Would it be efficient / smart to store almost everything in one table?
Edit: Here is some more information. I am building a social network that may end up with thousands of users. MySQL cluster will be used when the site is launched for now I am testing using a development VPS however everything will be moved to a dedicated server before launch. I know barely anything about NDB so this should be fun :)
This model is called EAV (entity-attribute-value)
It is usable for some scenarios, however, it's less efficient due to larger records, larger number or joins and impossibility to create composite indexes on multiple attributes.
Basically, it's used when entities have lots of attributes which are extremely sparse (rarely filled) and/or cannot be predicted at design time, like user tags, custom fields etc.
Granted I don't know too much about large database designs, but from what i've seen, even extremely large applications store their things is a very small amount of tables (20GB per table).
For me, i would rather have more info in 1 table as it means that data is not littered everywhere, and that I don't have to perform operations on multiple tables. Though 1 table also means messy (usually for me, each object would have it's on table, and an object is something you have in your application logic, like a User class, or a BlogPost class)
I guess what i'm trying to say is that do whatever makes sense. Don't put information on the same thing in 2 different table, and don't put information of 2 things in 1 table. Stick with 1 table only describes a certain object (this is very difficult to explain, but if you do object oriented, you should understand.)
nope. preferences should be stored as-they-are (in users table)
for example private messages can't be stored in users table ...
you don't have to think about joining different tables ...
I would first say that 20 tables is not a lot.
In general (it's hard to say from the limited info you give) the key-value model is not as efficient speed wise, though it can be more efficient space wise.
I would definitely not do this. Basically, the reason being if you have a large set of data stored in a single table you will see performance issues pretty fast when constantly querying the same table. Then think about the joins and complexity of queries you're going to need (depending on your site)... not a task I would personally like to undertake.
With using multiple tables it splits the data into smaller sets and the resources required for the query are lower and as an extra bonus it's easier to program!
There are some applications for doing this but they are rare, more or less if you have a large table with a ton of columns and most aren't going to have a value.
I hope this helps :-)
I think 20 tables in a project is not a lot. I do see your point and interest in using EAV but I don't think it's necessary. I would stick to tables in 3NF with proper FK relationships etc and you should be OK :)
the simple answer is that 20 tables won't make it a big DB and MySQL won't need any optimization for that. So focus on clean DB structures and normalization instead.

Should I break a larger mysql table into multiple?

I have a pretty large social network type site I have working on for about 2 years (high traffic and 100's of files) I have been experimenting for the last couple years with tweaking things for max performance for the traffic and I have learned a lot. Now I have a huge task, I am planning to completely re-code my social network so I am re-designing mysql DB's and everything.
Below is a photo I made up of a couple mysql tables that I have a question about. I currently have the login table which is used in the login process, once a user is logged into the site they very rarely need to hit the table again unless editing a email or password. I then have a user table which is basicly the users settings and profile data for the site. This is where I have questions, should it be better performance to split the user table into smaller tables? For example if you view the user table you will see several fields that I have marked as "setting_" should I just create a seperate setting table? I also have fields marked with "count" which could be total count of comments, photo's, friends, mail messages, etc. So should I create another table to store just the total count of things?
The reason I have them all on 1 table now is because I was thinking maybe it would be better if I could cut down on mysql queries, instead of hitting 3 tables to get information on every page load I could hit 1.
Sorry if this is confusing, and thanks for any tips.
alt text http://img2.pict.com/b0/57/63/2281110/0/800/dbtable.jpg
As long as you don't SELECT * FROM your tables, having 2 or 100 fields won't affect performance.
Just SELECT only the fields you're going to use and you'll be fine with your current structure.
should I just create a seperate setting table?
So should I create another table to store just the total count of things?
There is not a single correct answer for this, it depends on how your application is doing.
What you can do is to measure and extrapolate the results in a dev environment.
In one hand, using a separate table will save you some space and the code will be easier to modify.
In the other hand you may lose some performance ( and you already think ) by having to join information from different tables.
About the count I think it's fine to have it there, although it is always said that is better to calculate this kind of stuff, I don't think for this situation it hurt you at all.
But again, the only way to know what's better your you and your specific app, is to measuring, profiling and find out what's the benefit of doing so. Probably you would only gain 2% of improvement.
You'll need to compare performance testing results between the following:
Leaving it alone
Breaking it up into two tables
Using different queries to retrieve the login data and profile data (if you're not doing this already) with all the data in the same table
Also, you could implement some kind of caching strategy on the profile data if the usage data suggests this would be advantageous.
You should consider putting the counter-columns and frequently updated timestamps in its own table --- every time you bump them the entire row is written.
I wouldn't consider your user table terrible large in number of columns, just my opinion. I also wouldn't break that table into multiple tables unless you can find a case for removal of redundancy. Perhaps you have a lot of users who have the same settings, that would be a case for breaking the table out.
Should take into account the average size of a single row, in order to find out if the retrieval is expensive. Also, should try to use indexes as while looking for data...
The most important thing is to design properly, not just to split because "it looks large". Maybe the IP or IPs could go somewhere else... depends on the data saved there.
Also, as the socialnetworksite using this data also handles auth and autorization processes (guess so), the separation between login and user tables should offer a good performance, 'cause the data on login is "short enough", while the access to the profile could be done only once, inmediately after the successful login. Just do the right tricks to improve DB performance and it's done.
(Remember to visualize tables as entities, name them as an entity, not as a collection of them)
Two things you will want to consider when deciding whether or not you want to break up a single table into multiple tables is:
MySQL likes small, consistent datasets. If you can structure your tables so that they have fixed row lengths that will help performance at the potential cost of disk space. One thing that from what I can tell is common is taking fixed length data and putting it in its own table while the variable length data will go somewhere else.
Joins are in most cases less performant than not joining. If the data currently in your table will normally be accessed all at the same time then it may not be worth splitting it up as you will be slowing down both inserts and quite potentially reads. However, if there is some data in that table that does not get accessed as often then that would be a good candidate for moving out of the table for performance reasons.
I can't find a resource online to substantiate this next statement but I do recall in a MySQL Performance talk given by Jay Pipes that he said the MySQL optimizer has issues once you get more than 8 joins in a single query (MySQL 5.0.*). I am not sure how accurate that magic number is but regardless joins will usually take longer than queries out of a single table.

Normalization or Alternative with MySQL

building a site using PHP and MySQL that needs to store a lot of properties about users (for example their DOB, height, weight etc) which is fairly simple (single table, lots of properties (almost all are required)).
However, the system also needs to store other information, such as their spoken languages, instrumental abilities, etc. All in all their are over a dozen such characteristics. By default I assumed creating a separate table (called maybe languages) and then a link table with a composite id (user_id, language_id).
The problem I foresee though is when visitors attempt to search for users using these criteria. The dataset we're looking to use will have over 15,000 users at time of launch and the primary function will be searching and refining users. That means hundreds of queries daily and the prospect of using queries with up a dozen or more JOINs in them is not appealing.
So my question is, is there an alternative that's going to be more efficient? One way I was thinking is storing the M2M values as a CSV of IDs in the user table and then running a LIKE query against it. I know LIKE isn't the best, but is it better than a join?
Any possible solutions will be much appreciated.
Do it with joins. Then, if your performance goals are not met, try something else.
Start with a normalized database (e.g. a languages table, linked to the users table by a mapping table) to make sure you data is represented cleanly and logically.
If you have performance problems, examine your queries and make sure you have suitable indexes.
If you dislike repeatedly coding up queries with many joins, define some views.
If views are very slow to query, consider materialized views.
If you have several thousand records and a few hundred queries per day (really, that's pretty small and low-usage), these techniques will allow your site to run at full speed, with no compromise on data integrity. If you need to scale to many millions of records and millions of queries per day, even these techniques may not be enough; in which case, investigate cacheing and denormalization.

Categories