How to generate .htpasswd under PHP - php

Im trying to generate long htpasswd file with a lot of users (100+).
My DirectAdmin panel on linux server generates htpasswd file with password hashes starting with $1$.
I tried something like this:
function random_salt($length = 9) // 9 characters and $1$ = 12 characters
{
$chars = 'bcdfghjklmnprstvwxzaeiou';
for ($p = 0; $p < $length; $p++)
{
$result .= ($p%2) ? $chars[mt_rand(19, 23)] : $chars[mt_rand(0, 18)];
}
return $result;
}
echo crypt($myplainpassword, "$1$".random_salt());
It produces hash which starts with $1$, but server doesnt let me in. My passwords are 4-digit random "pin codes" generated in excel. Examples:
1215
5325
6261
What im doing wrong?

This how I generate the .htpasswd passwords...
$new_password = password_hash($old_password, PASSWORD_BCRYPT);
password_hash() creates a new password hash using a strong one-way
hashing algorithm. password_hash() is compatible with crypt().
Therefore, password hashes created by crypt() can be used with
password_hash().
The following algorithms are currently supported:
PASSWORD_BCRYPT - Use the CRYPT_BLOWFISH algorithm to create the hash.
This will produce a standard crypt() compatible hash using the "$2y$"
identifier. The result will always be a 60 character string, or FALSE
on failure. Supported Options:
http://php.net/manual/en/function.password-hash.php

I would recommend looking into the exact way how the hashes are generated. If you create a hash using your method, does it look the same as the one generated by DirectAdmin?
In general, I have previously used this to generate the entries.

Related

After bcrypt the password in laravel i am not able to log in [duplicate]

This question already has answers here:
How to use PHP's password_hash to hash and verify passwords
(5 answers)
Closed 9 months ago.
Every now and then I hear the advice "Use bcrypt for storing passwords in PHP, bcrypt rules".
But what is bcrypt? PHP doesn't offer any such functions, Wikipedia babbles about a file-encryption utility and Web searches just reveal a few implementations of Blowfish in different languages. Now Blowfish is also available in PHP via mcrypt, but how does that help with storing passwords? Blowfish is a general purpose cipher, it works two ways. If it could be encrypted, it can be decrypted. Passwords need a one-way hashing function.
What is the explanation?
bcrypt is a hashing algorithm which is scalable with hardware (via a configurable number of rounds). Its slowness and multiple rounds ensures that an attacker must deploy massive funds and hardware to be able to crack your passwords. Add to that per-password salts (bcrypt REQUIRES salts) and you can be sure that an attack is virtually unfeasible without either ludicrous amount of funds or hardware.
bcrypt uses the Eksblowfish algorithm to hash passwords. While the encryption phase of Eksblowfish and Blowfish are exactly the same, the key schedule phase of Eksblowfish ensures that any subsequent state depends on both salt and key (user password), and no state can be precomputed without the knowledge of both. Because of this key difference, bcrypt is a one-way hashing algorithm. You cannot retrieve the plain text password without already knowing the salt, rounds and key (password). [Source]
How to use bcrypt:
Using PHP >= 5.5-DEV
Password hashing functions have now been built directly into PHP >= 5.5. You may now use password_hash() to create a bcrypt hash of any password:
<?php
// Usage 1:
echo password_hash('rasmuslerdorf', PASSWORD_DEFAULT)."\n";
// $2y$10$xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
// For example:
// $2y$10$.vGA1O9wmRjrwAVXD98HNOgsNpDczlqm3Jq7KnEd1rVAGv3Fykk1a
// Usage 2:
$options = [
'cost' => 11
];
echo password_hash('rasmuslerdorf', PASSWORD_BCRYPT, $options)."\n";
// $2y$11$6DP.V0nO7YI3iSki4qog6OQI5eiO6Jnjsqg7vdnb.JgGIsxniOn4C
To verify a user provided password against an existing hash, you may use the password_verify() as such:
<?php
// See the password_hash() example to see where this came from.
$hash = '$2y$07$BCryptRequires22Chrcte/VlQH0piJtjXl.0t1XkA8pw9dMXTpOq';
if (password_verify('rasmuslerdorf', $hash)) {
echo 'Password is valid!';
} else {
echo 'Invalid password.';
}
Using PHP >= 5.3.7, < 5.5-DEV (also RedHat PHP >= 5.3.3)
There is a compatibility library on GitHub created based on the source code of the above functions originally written in C, which provides the same functionality. Once the compatibility library is installed, usage is the same as above (minus the shorthand array notation if you are still on the 5.3.x branch).
Using PHP < 5.3.7 (DEPRECATED)
You can use crypt() function to generate bcrypt hashes of input strings. This class can automatically generate salts and verify existing hashes against an input. If you are using a version of PHP higher or equal to 5.3.7, it is highly recommended you use the built-in function or the compat library. This alternative is provided only for historical purposes.
class Bcrypt{
private $rounds;
public function __construct($rounds = 12) {
if (CRYPT_BLOWFISH != 1) {
throw new Exception("bcrypt not supported in this installation. See http://php.net/crypt");
}
$this->rounds = $rounds;
}
public function hash($input){
$hash = crypt($input, $this->getSalt());
if (strlen($hash) > 13)
return $hash;
return false;
}
public function verify($input, $existingHash){
$hash = crypt($input, $existingHash);
return $hash === $existingHash;
}
private function getSalt(){
$salt = sprintf('$2a$%02d$', $this->rounds);
$bytes = $this->getRandomBytes(16);
$salt .= $this->encodeBytes($bytes);
return $salt;
}
private $randomState;
private function getRandomBytes($count){
$bytes = '';
if (function_exists('openssl_random_pseudo_bytes') &&
(strtoupper(substr(PHP_OS, 0, 3)) !== 'WIN')) { // OpenSSL is slow on Windows
$bytes = openssl_random_pseudo_bytes($count);
}
if ($bytes === '' && is_readable('/dev/urandom') &&
($hRand = #fopen('/dev/urandom', 'rb')) !== FALSE) {
$bytes = fread($hRand, $count);
fclose($hRand);
}
if (strlen($bytes) < $count) {
$bytes = '';
if ($this->randomState === null) {
$this->randomState = microtime();
if (function_exists('getmypid')) {
$this->randomState .= getmypid();
}
}
for ($i = 0; $i < $count; $i += 16) {
$this->randomState = md5(microtime() . $this->randomState);
if (PHP_VERSION >= '5') {
$bytes .= md5($this->randomState, true);
} else {
$bytes .= pack('H*', md5($this->randomState));
}
}
$bytes = substr($bytes, 0, $count);
}
return $bytes;
}
private function encodeBytes($input){
// The following is code from the PHP Password Hashing Framework
$itoa64 = './ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789';
$output = '';
$i = 0;
do {
$c1 = ord($input[$i++]);
$output .= $itoa64[$c1 >> 2];
$c1 = ($c1 & 0x03) << 4;
if ($i >= 16) {
$output .= $itoa64[$c1];
break;
}
$c2 = ord($input[$i++]);
$c1 |= $c2 >> 4;
$output .= $itoa64[$c1];
$c1 = ($c2 & 0x0f) << 2;
$c2 = ord($input[$i++]);
$c1 |= $c2 >> 6;
$output .= $itoa64[$c1];
$output .= $itoa64[$c2 & 0x3f];
} while (true);
return $output;
}
}
You can use this code like this:
$bcrypt = new Bcrypt(15);
$hash = $bcrypt->hash('password');
$isGood = $bcrypt->verify('password', $hash);
Alternatively, you may also use the Portable PHP Hashing Framework.
So, you want to use bcrypt? Awesome! However, like other areas of cryptography, you shouldn't be doing it yourself. If you need to worry about anything like managing keys, or storing salts or generating random numbers, you're doing it wrong.
The reason is simple: it's so trivially easy to screw up bcrypt. In fact, if you look at almost every piece of code on this page, you'll notice that it's violating at least one of these common problems.
Face It, Cryptography is hard.
Leave it for the experts. Leave it for people whose job it is to maintain these libraries. If you need to make a decision, you're doing it wrong.
Instead, just use a library. Several exist depending on your requirements.
Libraries
Here is a breakdown of some of the more common APIs.
PHP 5.5 API - (Available for 5.3.7+)
Starting in PHP 5.5, a new API for hashing passwords is being introduced. There is also a shim compatibility library maintained (by me) for 5.3.7+. This has the benefit of being a peer-reviewed and simple to use implementation.
function register($username, $password) {
$hash = password_hash($password, PASSWORD_BCRYPT);
save($username, $hash);
}
function login($username, $password) {
$hash = loadHashByUsername($username);
if (password_verify($password, $hash)) {
//login
} else {
// failure
}
}
Really, it's aimed to be extremely simple.
Resources:
Documentation: on PHP.net
Compatibility Library: on GitHub
PHP's RFC: on wiki.php.net
Zend\Crypt\Password\Bcrypt (5.3.2+)
This is another API that's similar to the PHP 5.5 one, and does a similar purpose.
function register($username, $password) {
$bcrypt = new Zend\Crypt\Password\Bcrypt();
$hash = $bcrypt->create($password);
save($user, $hash);
}
function login($username, $password) {
$hash = loadHashByUsername($username);
$bcrypt = new Zend\Crypt\Password\Bcrypt();
if ($bcrypt->verify($password, $hash)) {
//login
} else {
// failure
}
}
Resources:
Documentation: on Zend
Blog Post: Password Hashing With Zend Crypt
PasswordLib
This is a slightly different approach to password hashing. Rather than simply supporting bcrypt, PasswordLib supports a large number of hashing algorithms. It's mainly useful in contexts where you need to support compatibility with legacy and disparate systems that may be outside of your control. It supports a large number of hashing algorithms. And is supported 5.3.2+
function register($username, $password) {
$lib = new PasswordLib\PasswordLib();
$hash = $lib->createPasswordHash($password, '$2y$', array('cost' => 12));
save($user, $hash);
}
function login($username, $password) {
$hash = loadHashByUsername($username);
$lib = new PasswordLib\PasswordLib();
if ($lib->verifyPasswordHash($password, $hash)) {
//login
} else {
// failure
}
}
References:
Source Code / Documentation: GitHub
PHPASS
This is a layer that does support bcrypt, but also supports a fairly strong algorithm that's useful if you do not have access to PHP >= 5.3.2... It actually supports PHP 3.0+ (although not with bcrypt).
function register($username, $password) {
$phpass = new PasswordHash(12, false);
$hash = $phpass->HashPassword($password);
save($user, $hash);
}
function login($username, $password) {
$hash = loadHashByUsername($username);
$phpass = new PasswordHash(12, false);
if ($phpass->CheckPassword($password, $hash)) {
//login
} else {
// failure
}
}
Resources
Code: cvsweb
Project Site: on OpenWall
A review of the < 5.3.0 algorithm: on StackOverflow
Note: Don't use the PHPASS alternatives that are not hosted on openwall, they are different projects!!!
About BCrypt
If you notice, every one of these libraries returns a single string. That's because of how BCrypt works internally. And there are a TON of answers about that. Here are a selection that I've written, that I won't copy/paste here, but link to:
Fundamental Difference Between Hashing And Encryption Algorithms - Explaining the terminology and some basic information about them.
About reversing hashes without rainbow tables - Basically why we should use bcrypt in the first place...
Storing bcrypt Hashes - basically why is the salt and algorithm included in the hash result.
How to update the cost of bcrypt hashes - basically how to choose and then maintain the cost of the bcrypt hash.
How to hash long passwords with bcrypt - explaining the 72 character password limit of bcrypt.
How bcrypt uses salts
Best practices of salting and peppering passwords - Basically, don't use a "pepper"
Migrating old md5 passwords to bcrypt
Wrap Up
There are many different choices. Which you choose is up to you. However, I would HIGHLY recommend that you use one of the above libraries for handling this for you.
Again, if you're using crypt() directly, you're probably doing something wrong. If your code is using hash() (or md5() or sha1()) directly, you're almost definitely doing something wrong.
Just use a library...
You'll get a lot of information in Enough With The Rainbow Tables: What You Need To Know About Secure Password Schemes or Portable PHP password hashing framework.
The goal is to hash the password with something slow, so someone getting your password database will die trying to brute force it (a 10 ms delay to check a password is nothing for you, a lot for someone trying to brute force it). Bcrypt is slow and can be used with a parameter to choose how slow it is.
You can create a one-way hash with bcrypt using PHP's crypt() function and passing in an appropriate Blowfish salt. The most important of the whole equation is that A) the algorithm hasn't been compromised and B) you properly salt each password. Don't use an application-wide salt; that opens up your entire application to attack from a single set of Rainbow tables.
PHP - Crypt Function
Edit: 2013.01.15 - If your server will support it, use martinstoeckli's solution instead.
Everyone wants to make this more complicated than it is. The crypt() function does most of the work.
function blowfishCrypt($password,$cost)
{
$chars='./ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789';
$salt=sprintf('$2y$%02d$',$cost);
//For PHP < PHP 5.3.7 use this instead
// $salt=sprintf('$2a$%02d$',$cost);
//Create a 22 character salt -edit- 2013.01.15 - replaced rand with mt_rand
mt_srand();
for($i=0;$i<22;$i++) $salt.=$chars[mt_rand(0,63)];
return crypt($password,$salt);
}
Example:
$hash=blowfishCrypt('password',10); //This creates the hash
$hash=blowfishCrypt('password',12); //This creates a more secure hash
if(crypt('password',$hash)==$hash){ /*ok*/ } //This checks a password
I know it should be obvious, but please don't use 'password' as your password.
Version 5.5 of PHP will have built-in support for BCrypt, the functions password_hash() and password_verify(). Actually these are just wrappers around the function crypt(), and shall make it easier to use it correctly. It takes care of the generation of a safe random salt, and provides good default values.
The easiest way to use this functions will be:
$hashToStoreInDb = password_hash($password, PASSWORD_BCRYPT);
$isPasswordCorrect = password_verify($password, $existingHashFromDb);
This code will hash the password with BCrypt (algorithm 2y), generates a random salt from the OS random source, and uses the default cost parameter (at the moment this is 10). The second line checks, if the user entered password matches an already stored hash-value.
Should you want to change the cost parameter, you can do it like this, increasing the cost parameter by 1, doubles the needed time to calculate the hash value:
$hash = password_hash($password, PASSWORD_BCRYPT, array("cost" => 11));
In contrast to the "cost" parameter, it is best to omit the "salt" parameter, because the function already does its best to create a cryptographically safe salt.
For PHP version 5.3.7 and later, there exists a compatibility pack, from the same author that made the password_hash() function. For PHP versions before 5.3.7 there is no support for crypt() with 2y, the unicode safe BCrypt algorithm. One could replace it instead with 2a, which is the best alternative for earlier PHP versions.
Current thinking: hashes should be the slowest available, not the fastest possible. This suppresses rainbow table attacks.
Also related, but precautionary: An attacker should never have unlimited access to your login screen. To prevent that: Set up an IP address tracking table that records every hit along with the URI. If more than 5 attempts to login come from the same IP address in any five minute period, block with explanation. A secondary approach is to have a two-tiered password scheme, like banks do. Putting a lock-out for failures on the second pass boosts security.
Summary: slow down the attacker by using time-consuming hash functions. Also, block on too many accesses to your login, and add a second password tier.
Here's an updated answer to this old question!
The right way to hash passwords in PHP since 5.5 is with password_hash(), and the right way to verify them is with password_verify(), and this is still true in PHP 8.0. These functions use bcrypt hashes by default, but other stronger algorithms have been added. You can alter the work factor (effectively how "strong" the encryption is) via the password_hash parameters.
However, while it's still plenty strong enough, bcrypt is no longer considered state-of-the-art; a better set of password hash algorithms has arrived called Argon2, with Argon2i, Argon2d, and Argon2id variants. The difference between them (as described here):
Argon2 has one primary variant: Argon2id, and two supplementary variants: Argon2d and Argon2i. Argon2d uses data-depending memory access, which makes it suitable for cryptocurrencies and proof-of-work applications with no threats from side-channel timing attacks. Argon2i uses data-independent memory access, which is preferred for password hashing and password-based key derivation. Argon2id works as Argon2i for the first half of the first iteration over the memory, and as Argon2d for the rest, thus providing both side-channel attack protection and brute-force cost savings due to time-memory tradeoffs.
Argon2i support was added in PHP 7.2, and you request it like this:
$hash = password_hash('mypassword', PASSWORD_ARGON2I);
and Argon2id support was added in PHP 7.3:
$hash = password_hash('mypassword', PASSWORD_ARGON2ID);
No changes are required for verifying passwords since the resulting hash string contains information about what algorithm, salt, and work factors were used when it was created.
Quite separately (and somewhat redundantly), libsodium (added in PHP 7.2) also provides Argon2 hashing via the sodium_crypto_pwhash_str () and sodium_crypto_pwhash_str_verify() functions, which work much the same way as the PHP built-ins. One possible reason for using these is that PHP may sometimes be compiled without libargon2, which makes the Argon2 algorithms unavailable to the password_hash function; PHP 7.2 and higher should always have libsodium enabled, but it may not - but at least there are two ways you can get at that algorithm. Here's how you can create an Argon2id hash with libsodium (even in PHP 7.2, which otherwise lacks Argon2id support)):
$hash = sodium_crypto_pwhash_str(
'mypassword',
SODIUM_CRYPTO_PWHASH_OPSLIMIT_INTERACTIVE,
SODIUM_CRYPTO_PWHASH_MEMLIMIT_INTERACTIVE
);
Note that it doesn't allow you to specify a salt manually; this is part of libsodium's ethos – don't allow users to set params to values that might compromise security – for example there is nothing preventing you from passing an empty salt string to PHP's password_hash function; libsodium doesn't let you do anything so silly!
For OAuth 2 passwords:
$bcrypt = new \Zend\Crypt\Password\Bcrypt;
$bcrypt->create("youpasswordhere", 10)
As we all know storing password in clear text in database is not secure.
the bcrypt is a hashing password technique.It is used to built password security. One of the amazing function of bcrypt is it save us from hackers it is used to protect the password from hacking attacks because the password is stored in bcrypted form.
The password_hash() function is used to create a new password hash. It uses a strong & robust hashing algorithm. The password_hash() function is very much compatible with the crypt() function. Therefore, password hashes created by crypt() may be used with password_hash() and vice-versa. The functions password_verify() and password_hash() just the wrappers around the function crypt(), and they make it much easier to use it accurately.
SYNTAX
string password_hash($password, $algo, $options)
The following algorithms are currently supported by password_hash() function:
PASSWORD_DEFAULT
PASSWORD_BCRYPT
PASSWORD_ARGON2I
PASSWORD_ARGON2ID
Parameters: This function accepts three parameters as mentioned above and described below:
$password: It stores the password of the user.
$algo: It is the password algorithm constant that is used continuously while denoting the algorithm which is to be used when the hashing of password takes place.
$options: It is an associative array, which contains the options. If this is removed and doesn’t include, a random salt is going to be used, and the utilization of a default cost will happen.
Return Value: It returns the hashed password on success or False on failure.
Example:
Input:
echo password_hash("GFG#123", PASSWORD_DEFAULT);
Output:
$2y$10$.vGA19Jh8YrwSJFDodbfoHJIOFH)DfhuofGv3Fykk1a
Below programs illustrate the password_hash() function in PHP:
<?php echo password_hash("GFG#123", PASSWORD_DEFAULT); ?>
OUTPUT
$2y$10$Z166W1fBdsLcXPVQVfPw/uRq1ueWMA6sLt9bmdUFz9AmOGLdM393G
The password_hash() function in PHP is a built-in function, used to create a new password hash with different algorithms and options. The function uses a strong hashing algorithm.
The function take 2 mandatory parameters: $password and $algorithm, and 1 optional parameter $options.
$strongPassword = password_hash( $password, $algorithm, $options );
Algorithms allowed right now for password_hash() are:
PASSWORD_DEFAULT
PASSWORD_BCRYPT
PASSWORD_ARGON2I
PASSWORD_ARGON2ID
Example:
echo password_hash("abcDEF", PASSWORD_DEFAULT);
Answer:
$2y$10$KwKceUaG84WInAif5ehdZOkE4kHPWTLp0ZK5a5OU2EbtdwQ9YIcGy
Example:
echo password_hash("abcDEF", PASSWORD_BCRYPT);
Answer:
$2y$10$SNly5bFzB/R6OVbBMq1bj.yiOZdsk6Mwgqi4BLR2sqdCvMyv/AyL2
To use the BCRYPT, set option cost=12 in an $options, also change first parameter $password to some strong password like "wgt167yuWBGY##1987__".
Example:
echo password_hash("wgt167yuWBGY##1987__", PASSWORD_BCRYPT, ['cost' => 12]);
Answer:
$2y$12$TjSggXiFSidD63E.QP8PJOds2texJfsk/82VaNU8XRZ/niZhzkJ6S

How can password_verify and doveadm pw -t verify a password without salt

im currently trying to understand hashes and salts. As i understand it, it should not be possible to verify a password, if i only have the password and the generated hash(that was generated with a random salt ofc).
So how can the password_verify function in PHP verify my password, if i dont give it the salt? Is there a hidden variable in the background, that stores it for the php hashing functions?
And if that is the case, how can
doveadm pw -t '{SHA512-CRYPT}$6$myhash...' -p "qwertz"
verify it too, even if i run it on a complety different computer? Thats a tool, that comes with Dovecot(a MDA).
Here is my PHP code, that creates a random salt with 64 chars, combines it with a password, creates a hash and verifies the hash via password_verify().
I just started working on the whole hash/salt/pepper thing today, so there could be a huge flaw in my whole train of thought.
<?php
$password = "qwertz";
$salt = createSalt(64);
$hash = crypt($password, "$6$$salt");
if (password_verify($password, $hash)) {
echo 'Password is valid!';
} else {
echo 'Invalid password.';
}
function createSalt($length){
$chars = "IrhsYyLofUKj4caz0FDBCe2W9NRunTgQvp7qOXmS5GM3EJV6i8tAHdkPbxwl1Z";
$salt="";
for($i=0; $i < $length; $i++){
$newchar = substr($chars, rand(0,strlen($chars)-1),1);
$salt .= $newchar;
}
return $salt;
}
?>
The hash contains several pieces of information. This article explains the format used by Unix but I believe PHP password functions use a similar format (if not the same):
The hash field itself is comprised of three different fields. They are
separated by '$' and represent:
Some characters which represents the cryptographic hashing mechanism used to generate the actual hash
A randomly generated salt to safeguard against rainbow table attacks
The hash which results from joining the users password with the stored salt and running it through the hashing mechanism specified in
the first field
It can also include the exact per-algorithm options used to generate the hash, such us the algorithmic cost:
var_dump(password_hash('foo', PASSWORD_BCRYPT, [
'cost' => 8,
]));
string(60) "$2y$08$7Z5bTz7xXnom8QsrbZ7uQetMLxOZ7WjuDkUYRIh73Ffa17GV1Tb7q"
Here $2y$08$ means that Bcrypt with cost 8 was used.
If we use the newer Argon2 available in PHP/7.2 there're even more params:
$argon2i$v=19$m=1024,t=2,p=2$YzJBSzV4TUhkMzc3d3laeg$zqU/1IN0/AogfP4cmSJI1vc8lpXRW9/S0sYY2i2jHT0
Some backgrounds to the answer from #Álvaro González :
PHP manual suggests using "password_hash" instead of "crypt" function through "password_hash" is a "crypt()" wrapper ( Because, it uses a strong hash, generates a strong salt, and applies proper rounds automatically. )
"password_hash()" returns the algorithm, cost, and salt as part of the returned hash. Therefore, all information that's needed to verify the hash is included in it. This allows the "password_verify" function to verify the hash without needing separate storage for the salt or algorithm information. : http://php.net/manual/en/function.password-verify.php
Since, "password_hash" is a wrapper for "crypt", "crypt" also does the same, ie., returns the algorithm, cost, and salt as part of the returned hash. and thus "password_verify" can verify the hash.
Now, please check the answer given by #Álvaro González

PHP crypt() Blowfish Function Not Working

This is my first time using the crypt() function in PHP, and I can't figure out why it isn't working. My code is based on this article: http://www.techrepublic.com/blog/australia/securing-passwords-with-blowfish/1274
function blowfishHash ($pw) {
//generate random salt
$salt = "$2y$10$";
for ($i = 0; $i < 22; $i++) {
$salt .= substr("./ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", mt_rand(0, 63), 1);
}
$hash = crypt($pw, $salt);
//printout to file
$file = fopen("debug.txt", "w+");
fwrite($file, "\n\n\n".$pw);
fwrite($file, "\n\n\n".$salt);
fwrite($file, "\n\n\n".$hash);
fclose($file);
return $hash;
}
I called the function with the sample password "password".
The resultant salt was: $2y$10$NzRQNjTRfP4jXKvb4TCO.G
But the password was "$2mV0NZp92R3g" – which seems far too short.
Could someone please help me figure out what I'm doing wrong?
As you stated in your comment, you are using PHP 5.2.x.
The Blowfish implementation is only available in PHP >= 5.3.x. If for any reason it is not possible to install a newer PHP version, you could check here on more information on how to make Blowfish work with older PHP versions.
Since crypt in PHP 5.2 doesn't support CRYPT_BLOWFISH, it is instead defaulting to interpreting the salt as a CRYPT_DES style salt. Notice that the output starts with "$2", which is the two character salt that CRYPT_DES chose from the salt input and prepended to the hash, and the output length matches the exact CRYPT_DES output length.
Interestingly, you can achieve the same result in later PHP versions with CRYPT_BLOWFISH support by simply truncating the salt to two characters. Ie:
crypt('password', '$2y$10$NzRQNjTRfP4jXKvb4TCO.G') /* in PHP 5.2 */
==
crypt('password', '$2') /* in PHP 5.4 */
In theory, this might come in handy for backwards-compatibility if a CRYPT_BLOWFISH style salt was used in error on PHP 5.2.
This actually caused me a bit of confusion recently because the "$" character isn't valid salt input for CRYPT_DES as per the PHP crypt documentation, which says:
Standard DES-based hash with a two character salt from the alphabet "./0-9A-Za-z". Using invalid characters in the salt will cause crypt() to fail.
But here the "$" character clearly seems to be accepted by crypt() in both v5.2 and v5.4.
It would be both clearer and safer if crypt actually returned a failure like the documentation says it's supposed to, rather than accepting the "$" and defaulting to CRYPT_DES.
here is my blowfish encryption function ....
<?php
function bcrypt($input, $salt=null, $rounds=12) {
if($rounds < 4 || $rounds > 31) $rounds = 12;
if(is_null($salt)) $salt = sprintf('$2a$%02d$', $rounds).substr(str_replace('+', '.', base64_encode(pack('N4', mt_rand(), mt_rand(), mt_rand(), mt_rand()))), 0, 22);
return crypt($input, $salt);
}
$hash = bcrypt('password');
if($hash = bcrypt('password', $hash)) {
// password ok
}
?>
Initially only blowfish hashing with a salt starting with $2a$ was supported.
$2x$ and $2y$ Blowfish modes were added in PHP 5.3.7 to deal with potential high-bit attacks.
Your PHP 5.2.17 does not support $2y$ Blowfish mode.
This why your code is not working.

Update old stored md5 passwords in PHP to increase security

At the moment I have a database with md5 passwords stored, a few years back this was considered a little more secure than it is now and it's got to the point where the passwords need to be more secure.
I've read a lot of posts on here about crypt, md5, hash, bcrypt, etc and have come to consider using something along the lines of the following to 'secure' the passwords better than they are now.
I will use a combination of hash("sha512" and two salts, the first salt will be a site wide salt stored in a file such as .htaccess and the second salt will be created for each user.
Here's an example along the lines of what I'm testing at the moment:
.htaccess
SetEnv SITEWIDE_SALT NeZa5Edabex?26Y#j5pr7VASpu$8UheVaREj$yA*59t*A$EdRUqer_prazepreTr
example.php
$currentpassword = //get password
$pepper = getenv('SITEWIDE_SALT');
$salt = microtime().ip2long($_SERVER['REMOTE_ADDR']);
$saltpepper = $salt.$pepper;
$password = hash("sha512", md5($currentpassword).$saltpepper);
The salt would obviously need to be stored in a separate table to allow checking of future inserted login passwords but it would never be possible for a user to see. Do you think this is a sufficient way to go about this?
Ok, let's go over a few points here
What you have in $salt is not a salt. It's deterministic (meaning that there is no randomness in there at all). If you want a salt, use either mcrypt_create_iv($size, MCRYPT_DEV_URANDOM) or some other source of actual random entropy. The point is that it should be both unique and random. Note that it doesn't need to be cryptographically secure random... At absolute worst, I'd do something like this:
function getRandomBytes($length) {
$bytes = '';
for ($i = 0; $i < $length; $i++) {
$bytes .= chr(mt_rand(0, 255));
}
return $bytes;
}
As #Anony-Mousse indicated, never feed the output of one hash function into another without re-appending the original data back to it. Instead, use a proper iterative algorithm such as PBKDF2, PHPASS or CRYPT_BLOWFISH ($2a$).
My suggestion would be to use crypt with blowfish, as it's the best available for PHP at this time:
function createBlowfishHash($password) {
$salt = to64(getRandomBytes(16));
$salt = '$2a$10$' . $salt;
$result = crypt($password, $salt);
}
And then verify using a method like this:
function verifyBlowfishHash($password, $hash) {
return $hash == crypt($password, $hash);
}
(note that to64 is a good method defined here). You could also use str_replace('+', '.', base64_encode($salt));...
I'd also suggest you read the following two:
Fundamental difference between hashing and encrypting
Many hash iterations, append salt every time?
Edit: To Answer the Migration Question
Ok, so I realize that my answer did not address the migration aspect of the original question. So here's how I would solve it.
First, build a temporary function to create a new blowfish hash from the original md5 hash, with a random salt and a prefix so that we can detect this later:
function migrateMD5Password($md5Hash) {
$salt = to64(getRandomBytes(16));
$salt = '$2a$10$' . $salt;
$hash = crypt($md5Hash, $salt);
return '$md5' . $hash;
}
Now, run all the existing md5 hashes through this function and save the result in the database. We put our own prefix in so that we can detect the original password and add the additional md5 step. So now we're all migrated.
Next, create another function to verify passwords, and if necessary update the database with a new hash:
function checkAndMigrateHash($password, $hash) {
if (substr($hash, 0, 4) == '$md5') {
// Migrate!
$hash = substr($hash, 4);
if (!verifyBlowfishHash(md5($password), $hash) {
return false;
}
// valid hash, so let's generate a new one
$newHash = createBlowfishHash($password);
saveUpdatedPasswordHash($newHash);
return true;
} else {
return verifyBlowfishHash($password, $hash);
}
}
This is what I would suggest for a few reasons:
It gets the md5() hashes out of your database immediately.
It eventually (next login for each user) updates the hash to a better alternative (one that's well understood).
It's pretty easy to follow in code.
To answer the comments:
A salt doesn't need to be random - I direct you to RFC 2898 - Password Based Cryptography. Namely, Section 4.1. And I quote:
If there is no concern about interactions between multiple uses
of the same key (or a prefix of that key) with the password-
based encryption and authentication techniques supported for a
given password, then the salt may be generated at random and
need not be checked for a particular format by the party
receiving the salt. It should be at least eight octets (64
bits) long.
Additionally,
Note. If a random number generator or pseudorandom generator is not
available, a deterministic alternative for generating the salt (or
the random part of it) is to apply a password-based key derivation
function to the password and the message M to be processed.
A PseudoRandom Generator is available, so why not use it?
Is your solution the same as bcrypt? I can't find much documentation on what bcrypt actually is? - I'll assume that you already read the bcrypt Wikipedia Article, and try to explain it better.
BCrypt is based off the Blowfish block cipher. It takes the key schedule setup algorithm from the cipher, and uses that to hash the passwords. The reason that it is good, is that the setup algorithm for Blowfish is designed to be very expensive (which is part of what makes blowfish so strong of a cypher). The basic process is as follows:
A 18 element array (called P boxes, 32 bits in size) and 4 2-dimensional arrays (called S boxes, each with 256 entries of 8 bits each) are used to setup the schedule by initializing the arrays with predetermined static values. Additionally, a 64 bit state is initialized to all 0's.
The key passed in is XOred with all 18 P boxes in order (rotating the key if it's too short).
The P boxes are then used to encrypt the state that was previously initialized.
The ciphertext produced by step 3 is used to replace P1 and P2 (the first 2 elements of the P array).
Step 3 is repeated, and the result is put in P3 and P4. This continues until P17 and P18 are populated.
That's the key derivation from the Blowfish Cipher. BCrypt modifies that to this:
The 64 bit state is initialized to an encrypted version of the salt.
Same
The P boxes are then used to encrypt the (state xor part of the salt) that was previously initialized.
Same
Same
The resulting setup is then used to encrypt the password 64 times. That's what's returned by BCrypt.
The point is simple: It's a very expensive algorithm that takes a lot of CPU time. That's the real reason that it should be used.
I hope that clears things up.
Implementation of your new, more secure, password storage should use bcrypt or PBKDF2, as that's really the best solution out there right now.
Don't nest things, as you don't get any real security out of this due to collisions as #Anony-Mousse describes.
What you may want to do it implement a "transition routine" where your app transitions users over from the old MD5-based system to the new more secure system as they log in. When a login request comes in, see if the user is in the new, more secure, system. If so, bcrypt/PBKDF2 the password, compare, and you're good to go. If they are not (no one will be at first), check them using the older MD5-based system. If it matches (password is correct), perform the bcrypt/PBKDF2 transformation of the password (since you now have it), store it in the new system, and delete the old MD5 record. Next time they log in, they have an entry in the new system so you're good to go. Once all of the users have logged in once you implement this, you can remove this transition functionality and just authenticate against the new system.
Do not nest md5 inside your sha512 hash. An md5 collision then implies a hash collision in the outer hash, too (because you are hashing the same values!)
The common way of storing passwords is to use a scheme such as
<method><separator><salt><separator><hash>
When validating the password, you read <method> and <salt> from this field, reapply them to the password, and then check that it produces the same <hash>.
Check the crypt functions you have available. On a modern Linux system, crypt should be able to use sha512 password hashing in a sane way: PHP crypt manual. Do not reinvent the wheel, you probably just screw up more badly than md5, unless you are an expert on cryptographic hashing. It will even take care of above scheme: the Linux standard is to use $ as separator, and $6$ is the method ID for sha512, while $2a$ indicates you want to use blowfish. So you can even have multiple hashes in use in your database. md5 hashes are prefixed with $1$<salt>$ (unless you reinvented md5 hashing, then your hashes may be incompatible).
Seriously, reuse the existing crypt function. It is well checked by experts, extensible, and compatible across many applications.
I looked into this subject a while back and found the following link of great use:
Secure hash and salt for PHP passwords
I also use the following to create a random salt:
public static function getRandomString($length = 20) {
$characters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789';
$string = '';
for ($i = 0; $i < $length; $i++) {
$string .= substr($characters, (mt_rand() % strlen($characters)), 1);
}
return $string;
}

Am I using PHP's crypt() function correctly?

I've been using PHP's crypt() as a way to store and verify passwords in my database. I use hashing for other things, but crypt() for passwords. The documentation isn't that good and there seems to be a lot of debate. I'm using blowfish and two salts to crypt a password and store it in the database. Before I would store the salt and the encrypted password, (like a salted hash) but realized its redundant because the salt is part of the encrypted password string.
I'm a little confused on how rainbow table attacks would work on crypt(), anyway does this look correct from a security standpoint. I use a second salt to append to the password to increase the entropy of short passwords, probably overkill but why not?
function crypt_password($password) {
if ($password) {
//find the longest valid salt allowed by server
$max_salt = CRYPT_SALT_LENGTH;
//blowfish hashing with a salt as follows: "$2a$", a two digit cost parameter, "$", and 22 base 64
$blowfish = '$2a$10$';
//get the longest salt, could set to 22 crypt ignores extra data
$salt = get_salt ( $max_salt );
//get a second salt to strengthen password
$salt2 = get_salt ( 30 ); //set to whatever
//append salt2 data to the password, and crypt using salt, results in a 60 char output
$crypt_pass = crypt ( $password . $salt2, $blowfish . $salt );
//insert crypt pass along with salt2 into database.
$sql = "insert into database....";
return true;
}
}
function get_salt($length) {
$options = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789./';
$salt = '';
for($i = 0; $i <= $length; $i ++) {
$options = str_shuffle ( $options );
$salt .= $options [rand ( 0, 63 )];
}
return $salt;
}
function verify_password($input_password)
{
if($input_password)
{
//get stored crypt pass,and salt2 from the database
$stored_password = 'somethingfromdatabase';
$stored_salt2 = 'somethingelsefromdatabase';
//compare the crypt of input+stored_salt2 to the stored crypt password
if (crypt($input_password . $stored_salt2, $stored_password) == $stored_password) {
//authenticated
return true;
}
else return false;
}
else return false;
}
You really should have a look at PHPASS: http://www.openwall.com/phpass/ It's a password hashing framework using crypt() which is used in projects like Wordpress and phpBB.
There is also an excellent article on this website about password hashing, salting and stretching using crypt(): http://www.openwall.com/articles/PHP-Users-Passwords
UPDATE:
Currently there's an alternative for the PHPASS library. In the next version of PHP there are special functions for hashing and verifying passwords (using bcrypt): http://www.php.net/manual/en/ref.password.php. There is a compatibility library that implements these functions for PHP 5.3.7+: https://github.com/ircmaxell/password_compat
Your use of crypt() is fine. crypt($input, $stored) == $stored is the way it is designed to be used.
Your get_salt() function is not great, since it is using the often-poor rand() function. You should consider using a stronger random function, like openssl_random_pseudo_bytes(), instead.
The idea of a rainbow table is that an attacker can make a table with all possible passwords and their hashes at home.
E.g.
PASSWORD HASH
iloveSO gjroewjgo
password knbnogjwm
secret gjroehghe
jbieber rewgroewj
etc.
With this table, the attacker can quickly convert any hash to a password. Rainbow table uses some tricks so that not all hashes have to be stored, but it still computes all hashes beforehand.
By using a salt, even when storing it with the password, you make this much harder. Instead of hashing every word in a dictionary, the attacker would now have to hash every word with every salt. With a long enough salt, this gives enough combinations to make it unfeasible to compute all these hashes.
So a salt is not meant to be an extra password, known only to the application, it is meant to change the hash function so that it is non-standard.
This is a misuse of crypt() because you are using a deprecated primitive. Blowfish is very old, twofish is the replacement and even that is old because threefish is almost finalized. You should be using a member of the sha2 family, sha256 or sha512 are both good choices. crypt() can be used with sha256 or sha512, you should use the CRYPT_SHA256 CRYPT_SHA512 parameters respectively.
Also your salts have a very small entropy/size ratio, you are only using an alphanumeric set which is a joke because alphanumeric rainbow tables are the most common. You should be using a full byte which base256, and I recommend a salt that is 256 bytes long. Keep in mind all hash functions are binary safe by definition thus you shouldn't have to worry about null bytes and the like.
Use SHA-512 (if available) with a salt which includes time() and openssl_random_pseudo_bytes(). Crypt is consolidated / efficient because it returns the salt inserted with the hashed string.

Categories