Co-ordinates of the 3rd point in a triangle - php

Given :
Point A (a1,b1)
Point B (a2,b2)
Distance between A and B
Distance between A and C
Angle between AB and AC = 90deg
Have to find :
C(a3,b3)
I have the co-ordinates of 2 points A(x,y) and B(p,q) but want to find the co-ordinates of a third point C(m,n).
I know the distance between A and B, A and C, and the angle between A and C which is 90deg. I know this is simple Pythagoras theorem. But how do I implement it in php and what would be the formula?

Let $x,$y and $p,$q be the given coordinates of A and B, furthermore call $d the known distance between A and C and $d0 the known distance between A and B. By doing a little math you get the following formulae (here I'm directly implementing it in PHP):
$m = $x + ($q - $y) * $d / $d0;
$n = $y - ($p - $x) * $d / $d0;
There is also a second solution:
$m = $x - ($q - $y) * $d / $d0;
$n = $y + ($p - $x) * $d / $d0;
EDIT: Here is how I got the equations: I rotated the vector AB, which has the coordinates ($p - $x, $q - $y), by 90 degrees to obtain ($q - $y, -($p - $x)) and (-($q - $y), $p - $x) (depending whether clockwise or counter-clockwise) and then got the vector AC by scaling it with $d / $d0 (the ratio of their lengths). Now I just translated the vector by ($x, $y) to get ($m, $n).
Maybe this can be implemented more elegantly by using a vector class in PHP or even a whole library, but I think for this simple calculation it is much easier to implement it "by hand".

Related

Get Random XYZ on surface of Sphere from Sphere Loc and Radius

I am trying to get random X Y Z coordinates on the surface of a sphere, based on the spheres center in X Y Z, and it's radius in PHP. Currently, my system is just purely random, hoping for a position on the planets center. I'm inept in math so please bear with me (dyscalculia and dyslexia).
Right now I have just random chaos as follows (note randint is a custom function that checks for rand_int, mt_rand and rand and uses the newest.
$nx = randint( abs( $poo['x'] - $max_distance_x ), abs( $poo['x'] + $max_distance_x ) );
$ny = randint( abs( $poo['y'] - $max_distance_y ), abs( $poo['y'] + $max_distance_y ) );
$nz = randint( abs( $poo['z'] - $max_distance_z ), abs( $poo['z'] + $max_distance_z ) );
but I have the planet radius $pradius, and planet XYZ center array $poo poo(x, y, z), and I think I can get random surface X Y Z, just not sure. I've looked at other languages but am having trouble understanding anything to port.
Update
Based on the two methods provided in an answer I have come up with the following two functions. However both to not function correctly.
The following function only produces craters (points) on the top of the planetoid (north pole), even though it should be calculating from planetoid center at it's radius.
function basic_spheroid_point( $cx, $cy, $cz, $r ) {
$x = randint(-$r, $r);
$y = randint(-$r, $r);
$z = randint(-$r, $r);
$dx = $x - $cx;
$dy = $y - $cy;
$dz = $z - $cz;
$dd = sqrt( ( $dx * $dx ) + ( $dy * $dy ) + ( $dz * $dz ) );
if ( $dd > $r )
return basic_spheroid_point( $cx, $cy, $cz, $r );
$dx = $r * $dx / $dd;
$dy = $r * $dy / $dd;
$dz = $r * $dz / $dd;
return array( $cx + $dx, $cy + $dy, $cz + $dz );
}
This function bunches craters at the North Pole of the planet, though there is also global coverage craters so it is working partially.
function uniform_spheroid_point($cx, $cy, $cz, $r) {
$ap = randint( 0, 359 );
$aq = randint( 0, 359 );
$dx = $r* cos( $ap ) * cos( $aq );
$dy = $r * sin( $aq );
$dz = $r * sin( $ap ) * cos( $aq );
return array( $cx + $dx, $cy + $dy, $cz + $dz );
}
You're currently selecting a point at random from the interior of a parallelepiped with side lengths 2*max_distance_x, 2*max_distance_y and 2*max_distance_z. Let us assume that these are all the same and equivalent to the radius r of the sphere on whose surface you'd like to randomly select points. Then, your method would select randomly from a cube of side length 2r. Essentially none of your random points will actually be on the surface of the sphere of radius r when selected in this way.
However - given a point in the cube, what you can do is this:
calculate the vector from the center point to your random point (the "delta"). For example, if your center point is 100,100,100 and your radius is 100 and you randomly pick point 50,100,150, the vector you're looking for is -50,0,50.
calculate the length of the vector from step 1. This uses the formula for the distance between two points, extended so that it contemplates the point's three coordinates: sqrt(dx^2 + dy^2 +dz^2). For example, our distance is sqrt((-50)^2 + 0^2 + 50^2) = sqrt(2500 + 0 + 2500) = 50sqrt(2).
scale the vector from step 1 by a factor equal to r/d where d is the vector's length as determined in step 2. For our example, we will scale the vector by a factor of r/d = 100/(50sqrt(2)) = 2/sqrt(2) = sqrt(2). This gives -50sqrt(2), 0, 50sqrt(2).
Now, add the scaled vector from step 3 to the center point to get a point on the surface of the sphere of radius r. In our example, the point on the surface of the sphere is 100-50sqrt(2), 100, 100+50sqrt(2).
Now the only issue with this is that some points are more likely to be chosen than others. The reason for this is that some points on the surface of the sphere have more of the cube outside them than other points do. Specifically, a point of the sphere lying on the bounding cube has no points further outside it, but the point on the sphere that intersects a line connecting the center of the cube and one of its corners has a lot of space outside the sphere). To get a truly uniform distribution of points, you'd need to exclude any points selected at random which do not lie inside or on the surface of the sphere. If you do that, you will get a uniform distribution of points by the above method. Because the volume of the cube is 8r^3 and the volume of the sphere is 4/3pir^3, and because 4/3pi ~ 4, you have about a 50% chance at each draw of getting a point that you have to throw away. On average, you'd expect to get one good point in every two draws. You should not typically need many random draws to get a good one, but it is technically unbounded.
If you want to make sure every random draw is a good one, I might suggest selecting two angles uniformly at random from 0 to 360 degrees. Then, use those angles to identify a point on the sphere. So, for instance, suppose you first draw angle p and then angle q. Angle p can determine the plain from which the point will be taken. This plane will intersect the sphere in a circular cross section. Angle q can then determine which point on this intersected circle is returned as the random point. Suppose these angles give point (x', y', z'). Well...
y' = r*sin(q) … since nothing else determines the y coordinate except q
x' = r*cos(p)*cos(q)
z' = r*sin(p)*cos(q)
This has the advantage of not needing to reject any random samples, and the disadvantage of requiring relatively more costly trigonometric operations.
EDIT: Pseudocode for each method
Method 1:
RandomPointOnSphere(centerX, centerY, centerZ, radius)
1. x = random(-radius, radius)
2. y = random(-radius, radius)
3. z = random(-radius, radius)
4. dx = x - centerX
5. dy = y - centerY
6. dz = z - centerZ
7. dd = sqrt(dx*dx + dy*dy + dz*dz)
8. if dd > radius then return RandomPointOnSphere(centerX, centerY, centerZ, radius)
9. dx = radius * dx / dd
10. dy = radius * dy / dd
11. dz = radius * dz / dd
12. return (centerX + dx, centerY + dy, centerZ + dz)
Method 2:
RandomPointOnSphere(centerX, centerY, centerZ, radius)
1. angleP = random(0, 359)
2. angleQ = random(0, 359)
3. dx = radius* cos(angleP) * cos(angleQ)
4. dy = radius * sin(angleQ)
5. dz = radius * sin(angleP) * cos(angleQ)
6. return (centerX + dx, centerY + dy, centerZ + dz)

Determine if $x is divisible evenly by $y in PHP

I simply want to know if $x is evenly divisible by $y. For example's sake assume:
$x = 70;
$y = .1;
First thing I tried is:
$x % $y
This seems to work when both numbers are integers but fails if they are not and if $y is a decimal less than 1 returns a "Division by zero" error, so then I tried:
fmod($x,$y)
Which returns equally confusing results, "0.099999999999996".
php.net states fmod():
Returns the floating point remainder of dividing the dividend (x) by the divisor (y)
Well according to my calculator 70 / .1 = 700. Which means the remainder is 0. Can someone please explain what I'm doing wrong?
One solution would be doing a normal division and then comparing the value to the next integer. If the result is that integer or very near to that integer the result is evenly divisible:
$x = 70;
$y = .1;
$evenlyDivisable = abs(($x / $y) - round($x / $y, 0)) < 0.0001;
This subtracts both numbers and checks that the absolute difference is smaller than a certain rounding error. This is the usual way to compare floating point numbers, as depending on how you got a float the representation may vary:
php> 0.1 + 0.1 + 0.1 == 0.3
bool(false)
php> serialize(.3)
'd:0.29999999999999999;'
php> serialize(0.1 + 0.1 + 0.1)
'd:0.30000000000000004;'
See this demo:
php> $x = 10;
int(10)
php> $y = .1;
double(0.1)
php> abs(($x / $y) - round($x / $y, 0)) < 0.0001;
bool(true)
php> $y = .15;
double(0.15)
php> abs(($x / $y) - round($x / $y, 0)) < 0.0001;
bool(false)
.1 doesn't have an exact representation in binary floating point, which is what causes your incorrect result. You could multiply them by a large enough power of 10 so they are integers, then use %, then convert back. This relies on them not being different by a big enough factor that multiplying by the power of 10 causes one of them to overflow/lose precision. Like so:
$x = 70;
$y = .1;
$factor = 1.0;
while($y*$factor != (int)($y*$factor)){$factor*=10;}
echo ($x*$factor), "\n";
echo ($y*$factor), "\n";
echo (double)(($x*$factor) % ($y*$factor))/$factor;
There is a pure math library in bitbucket : https://bitbucket.org/zdenekdrahos/bn-php
The solution will be then :
php > require_once 'bn-php/autoload.php';
php > $eval = new \BN\Expression\ExpressionEvaluator();
php > $operators = new \BN\Expression\OperatorsFactory();
php > $eval->setOperators($operators->getOperators(array('%')));
php > echo $eval->evaluate('70 % 0.1'); // 0
0.00000000000000000000
tested on php5.3
credits : http://www.php.net/manual/en/function.bcmod.php#111276
Float-point representation varies from machine to machine. Thankfully there are standards. PHP typically uses the IEEE 754 double precision format for floating-point representation which is one of the most common standards. See here for more information on that. With that said take a look at this calculator for a better understanding as to the why. As for the how I like Tim's solution especially if you're dealing with user input.
As you said, using the modulus operator works fine when it's an integer, so why not set it up so that it operates on integers. In my case, I needed to check divisibility by 0.25:
$input = 5.251
$x = round($input, 3); // round in case $input had more decimal places
$y = .25;
$result = ($x * 1000) % ($y * 1000);
In your case:
$input = 70.12
$x = round($input, 2);
$y = .1;
$result = ($x * 100) % ($y * 100);

Finding Points in a Rectangle or Circle with mysql

I have a mysql database table with a list points with their Co-ordinates (x,y)
I want to find the list of points which fall inside the rectangle. This would have been simple had any one side of the rectangle been aligned parallel or perpendicular to any axis. But is not. Which means the rectangle is rotated.
I also have to find the points inside a circle.
Known Data for Rectangle
-Coordinates for all the four points
Known Data for Circle
-Co-ordinates for the center and the radius.
How do I query the mysql table to find the points falling in the rectangle and the circle?
If it matters then the front end I am using is PHP.
A rectangle can be defined by two points representing the opposing corners, eg: A(x,y) and B(x,y). If you have a point C(x,y) that you want to test to see if it is inside the rectangle then:
IF( (Cx BETWEEN Ax AND Bx) AND (Cy BETWEEN Ay AND By) ) THEN
point C is in the rectangle defined by points A and B
ELSE
nope
ENDIF
A circle can be defined by a single point C(x,y) and a radius R. If the distance D between the center and the point P(x,y) is less than the radius R, then it is inside the circle:
And of course you remember the Pythagorean Theoreom, right?
C² = A² + B² SO C = SQRT(A² + B²)
So:
D = SQRT( ABS(Cx - Px)² + ABS(Cy - Py)²)
IF( D <= R ) THEN
point P is inside the circle with center C and radius R
ELSE
nope
ENDIF
edit:
The algorithm for checking if a point is within a polygon is a bit more complex than what I'd prefer to write in a SQL query or stored procedure, but it is entirely possible. It's worth noting that it runs in constant-time and is very lightweight. [requires roughly 6 arithmetic ops and maybe 2 or 3 logic ops for each point in the poly]
To pare down the number calculations required you can simply write your select to get points within a rough bounding box before procesing them further:
WHERE
x BETWEEN MIN(x1,x2,x3,x4) AND MAX(x1,x2,x3,x4)
AND
y BETWEEN MIN(y1,y2,y3,y4) AND MAX(y1,y2,y3,y4)
Assuming the columns containing the x and y values are indexed this might use a few less CPU cycles than simply doing the math, but it's debatable and I'm inclined to call it a wash.
As for the circle you can't possibly get more efficient than
WHERE
SQRT( POW(ABS($Cx - x),2) + POW(ABS($Cy - y),2) ) < $radius
You're far too concerned with the perceived cost of these calculations, just write the code and get it working. This is not the stage to be performing such niggling optimizations.
One thing to add to #Sammitch's answer is, calculating haversine distance in case you are looking at latitudes and longitudes on world map (distance calculation on a spherical surface, since Earth is a sphere ;) https://en.wikipedia.org/wiki/Haversine_formula)
Here's a vanilla Javascript example for calculating that:
function calculateHaversineDistance(lat1x, lon1, lat2x, lon2) {
var R = 6371; // km
var dLat = toRad(lat2x-lat1x);
var dLon = toRad(lon2-lon1);
var lat1 = toRad(lat1x);
var lat2 = toRad(lat2x);
var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.sin(dLon/2) * Math.sin(dLon/2) * Math.cos(lat1) * Math.cos(lat2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
return R * c;
}
function toRad(x) {
return x * Math.PI / 180;
}
EDIT->
Here's a php version I wrote:
function toRad($x) {
return $x * pi() / 180;
}
function calculateHaversineDistance($lat1, $lon1, $lat2, $lon2) {
$R = 6371; // km
$dLat = $this->toRad($lat2-$lat1);
$dLon = $this->toRad($lon2-$lon1);
$lat1 = $this->toRad($lat1);
$lat2 = $this->toRad($lat2);
$a = sin($dLat/2) * sin($dLat/2) +
sin($dLon/2) * sin($dLon/2) * cos($lat1) * cos($lat2);
$c = 2 * atan2(sqrt($a), sqrt(1-$a));
return $R * $c;
}

Algorithm to add Color in Bezier curves

I'm playing with GD library for a while and more particuraly with Bezier curves atm.
I used some existant class which I modified a little (seriously eval()...). I found out it was a generic algorithm used in and convert for GD.
Now I want to take it to another level: I want some colors.
No problem for line color but with fill color it's harder.
My question is:
Is there any existant algorithm for that? I mean mathematical algorithm or any language doing it already so that I could transfer it to PHP + GD?
EDIT2
So, I tried #MizardX solution with a harder curve :
1st position : 50 - 50
final position : 50 - 200
1st control point : 300 - 225
2nd control point : 300 - 25
Which should show this :
And gives this :
EDIT
I already read about #MizardX solution. Using imagefilledpolygon to make it works.
But it doesn't work as expected. See the image below to see the problem.
Top graph is what I expect (w/o the blackline for now, only the red part).
Coordinates used:
first point is 100 - 100
final point is 300 - 100
first control point is 100 - 0
final control point is 300 - 200
Bottom part is what I get with that kind of algorithm...
Convert the Bezier curve to a polyline/polygon, and fill that. If you evaluate the Bezier polynomial at close enough intervals (~1 pixel) it will be identical to an ideal Bezier curve.
I don't know how familiar you are with Bezier curves, but here is a crash course:
<?php
// Calculate the coordinate of the Bezier curve at $t = 0..1
function Bezier_eval($p1,$p2,$p3,$p4,$t) {
// lines between successive pairs of points (degree 1)
$q1 = array((1-$t) * $p1[0] + $t * $p2[0],(1-$t) * $p1[1] + $t * $p2[1]);
$q2 = array((1-$t) * $p2[0] + $t * $p3[0],(1-$t) * $p2[1] + $t * $p3[1]);
$q3 = array((1-$t) * $p3[0] + $t * $p4[0],(1-$t) * $p3[1] + $t * $p4[1]);
// curves between successive pairs of lines. (degree 2)
$r1 = array((1-$t) * $q1[0] + $t * $q2[0],(1-$t) * $q1[1] + $t * $q2[1]);
$r2 = array((1-$t) * $q2[0] + $t * $q3[0],(1-$t) * $q2[1] + $t * $q3[1]);
// final curve between the two 2-degree curves. (degree 3)
return array((1-$t) * $r1[0] + $t * $r2[0],(1-$t) * $r1[1] + $t * $r2[1]);
}
// Calculate the squared distance between two points
function Point_distance2($p1,$p2) {
$dx = $p2[0] - $p1[0];
$dy = $p2[1] - $p1[1];
return $dx * $dx + $dy * $dy;
}
// Convert the curve to a polyline
function Bezier_convert($p1,$p2,$p3,$p4,$tolerance) {
$t1 = 0.0;
$prev = $p1;
$t2 = 0.1;
$tol2 = $tolerance * $tolerance;
$result []= $prev[0];
$result []= $prev[1];
while ($t1 < 1.0) {
if ($t2 > 1.0) {
$t2 = 1.0;
}
$next = Bezier_eval($p1,$p2,$p3,$p4,$t2);
$dist = Point_distance2($prev,$next);
while ($dist > $tol2) {
// Halve the distance until small enough
$t2 = $t1 + ($t2 - $t1) * 0.5;
$next = Bezier_eval($p1,$p2,$p3,$p4,$t2);
$dist = Point_distance2($prev,$next);
}
// the image*polygon functions expect a flattened array of coordiantes
$result []= $next[0];
$result []= $next[1];
$t1 = $t2;
$prev = $next;
$t2 = $t1 + 0.1;
}
return $result;
}
// Draw a Bezier curve on an image
function Bezier_drawfilled($image,$p1,$p2,$p3,$p4,$color) {
$polygon = Bezier_convert($p1,$p2,$p3,$p4,1.0);
imagefilledpolygon($image,$polygon,count($polygon)/2,$color);
}
?>
Edit:
I forgot to test the routine. It is indeed as you said; It doesn't give a correct result. Now I have fixed two bugs:
I unintentionally re-used the variable names $p1 and $p2. I renamed them $prev and $next.
Wrong sign in the while-loop. Now it loops until the distance is small enough, instead of big enough.
I checked the algorithm for generating a Polygon ensuring a bounded distance between successive parameter-generated points, and seems to work well for all the curves I tested.
Code in Mathematica:
pts={{50,50},{300,225},{300,25},{50,200}};
f=BezierFunction[pts];
step=.1; (*initial step*)
While[ (*get the final step - Points no more than .01 appart*)
Max[
EuclideanDistance ###
Partition[Table[f[t],{t,0,1,step}],2,1]] > .01,
step=step/2]
(*plot it*)
Graphics#Polygon#Table[f[t],{t,0,1,step}]
.
.
The algorithm could be optimized (ie. generate less points) if you don't require the same parameter increment between points, meaning you can chose a parameter increment at each point that ensures a bounded distance to the next.
Random examples:
Generate a list of successive points which lie along the curve (p_list)).
You create a line between the two end points of the curve (l1).
Then you are going to find the normal of the line (n1). Using this normal find the distance between the two furthest points (p_max1, and p_max2) along this normal (d1). Divide this distance into n discrete units (delta).
Now shift l1 along n1 by delta, and solve for the points of intersection (start with brute force and check for a solution between all the line segments in p_list). You should be able to get two points of intersection for each shift of l1, excepting boundaries and self intersection where you may have only have a single point. Hopefully the quad routine can have two points of the quad be at the same location (a triangle) and fill without complaint otherwise you'll need triangles in this case.
Sorry I didn't provide pseudo code but the idea is pretty simple. It's just like taking the two end points and joining them with a ruler and then keeping that ruler parallel to the original line start at one end and with successive very close pencil marks fill in the whole figure. You'll see that when you create your little pencil mark (a fine rectangle) that the rectangle it highly unlikely to use the points on the curve. Even if you force it to use a point on one side of the curve it would be quite the coincidence for it to exactly match a point on the other side, for this reason it is better to just calculate new points. At the time of calculating new points it would probably be a good idea to regenerate the curves p_list in terms of these points so you can fill it more quickly (if the curve is to stay static of course otherwise it wouldn't make any sense).
This answer is very similar to #MizardX's, but uses a different method to find suitable points along the Bezier for a polygonal approximation.
function split_cubic($p, $t)
{
$a_x = $p[0] + ($t * ($p[2] - $p[0]));
$a_y = $p[1] + ($t * ($p[3] - $p[1]));
$b_x = $p[2] + ($t * ($p[4] - $p[2]));
$b_y = $p[3] + ($t * ($p[5] - $p[3]));
$c_x = $p[4] + ($t * ($p[6] - $p[4]));
$c_y = $p[5] + ($t * ($p[7] - $p[5]));
$d_x = $a_x + ($t * ($b_x - $a_x));
$d_y = $a_y + ($t * ($b_y - $a_y));
$e_x = $b_x + ($t * ($c_x - $b_x));
$e_y = $b_y + ($t * ($c_y - $b_y));
$f_x = $d_x + ($t * ($e_x - $d_x));
$f_y = $d_y + ($t * ($e_y - $d_y));
return array(
array($p[0], $p[1], $a_x, $a_y, $d_x, $d_y, $f_x, $f_y),
array($f_x, $f_y, $e_x, $e_y, $c_x, $c_y, $p[6], $p[7]));
}
$flatness_sq = 0.25; /* flatness = 0.5 */
function cubic_ok($p)
{
global $flatness_sq;
/* test is essentially:
* perpendicular distance of control points from line < flatness */
$a_x = $p[6] - $p[0]; $a_y = $p[7] - $p[1];
$b_x = $p[2] - $p[0]; $b_y = $p[3] - $p[1];
$c_x = $p[4] - $p[6]; $c_y = $p[5] - $p[7];
$a_cross_b = ($a_x * $b_y) - ($a_y * $b_x);
$a_cross_c = ($a_x * $c_y) - ($a_y * $c_x);
$d_sq = ($a_x * $a_x) + ($a_y * $a_y);
return max($a_cross_b * $a_cross_b, $a_cross_c * $a_cross_c) < ($flatness_sq * $d_sq);
}
$max_level = 8;
function subdivide_cubic($p, $level)
{
global $max_level;
if (($level == $max_level) || cubic_ok($p)) {
return array();
}
list($q, $r) = split_cubic($p, 0.5);
$v = subdivide_cubic($q, $level + 1);
$v[] = $r[0]; /* add a point where we split the cubic */
$v[] = $r[1];
$v = array_merge($v, subdivide_cubic($r, $level + 1));
return $v;
}
function get_cubic_points($p)
{
$v[] = $p[0];
$v[] = $p[1];
$v = array_merge($v, subdivide_cubic($p, 0));
$v[] = $p[6];
$v[] = $p[7];
return $v;
}
function imagefilledcubic($img, $p, $color)
{
$v = get_cubic_points($p);
imagefilledpolygon($img, $v, count($v) / 2, $color);
}
The basic idea is to recursively split the cubic in half until the bits we're left with are almost flat. Everywhere we split the cubic, we stick a polygon point.
split_cubic splits the cubic in two at parameter $t. cubic_ok is the "are we flat enough?" test. subdivide_cubic is the recursive function. Note that we stick a limit on the recursion depth to avoid nasty cases really screwing us up.
Your self-intersecting test case:
$img = imagecreatetruecolor(256, 256);
imagefilledcubic($img, array(
50.0, 50.0, /* first point */
300.0, 225.0, /* first control point */
300.0, 25.0, /* second control point */
50.0, 200.0), /* last point */
imagecolorallocate($img, 255, 255, 255));
imagepng($img, 'out.png');
imagedestroy($img);
Gives this output:
I can't figure out how to make PHP nicely anti-alias this; imageantialias($img, TRUE); didn't seem to work.

complex math with great circle formula

I have a from location (latitude, longitude) and to location (latitude, longitude). After calculating, it should show me what would be the nearest way to go from using a compass. The following is PHP code to do that, but its showing the wrong direction, I need little help on this.
function GreatCircleDirection ($OrigLat, $DestLat, $OrigLong, $DestLong, $Distance)
{
$Result = 0.0;
$L1 = deg2rad($OrigLat);
$L2 = deg2rad($DestLat);
$D = deg2rad($Distance / 60); # divide by 60 for nautical miles NM to degree
$I1 = deg2rad($OrigLong);
$I2 = deg2rad($DestLong);
$Dlong = $I1 - $I2;
$A = sin($L2) - cos($D + $L1 - pi() / 2);
$B = acos($A / (cos($L1) * sin($D)) + 1);
if ((abs($Dlong) < pi() and $Dlong < 0) or (abs($Dlong) > pi() and $Dlong > 0))
{
//$B = (2 * pi()) - $B;
}
$Result = $B;
return rad2deg($Result);
}
function GreatCircleDistance ($OrigLat , $DestLat, $OrigLong, $DestLong)
{
$L1 = deg2rad($OrigLat);
$L2 = deg2rad($DestLat);
$I1 = deg2rad($OrigLong);
$I2 = deg2rad($DestLong);
$D = acos(cos($L1 - $L2) - (1 - cos($I1 - $I2)) * cos($L1) * cos($L2));
# One degree of such an arc on the earth's surface is 60 international nautical miles NM
return rad2deg($D * 60);
}
Bug on if condition:
this is the values in the if condition of greatCircleDirection function, need to know what to change to fix it.
if (0.57700585070933 < 3.1415926535898 and 0.57700585070933 < 0) or (0.57700585070933 > 3.1415926535898 and 0.57700585070933 > 0)
example:
from lat: 33.71,
to lat: 21,
from long: 73.06,
to long: 40 ,
distance: 1908.842544944
direction 104.96527938779 (direction should be 255.87 or so)
Computing the distance is unnecessary; it simply adds more operations and can introduces more numerical errors. Using your style of coding, something like this should work:
function GreatCircleDirection($OrigLat, $OrigLong, $DestLat, $DestLong)
{
$L1 = deg2rad($OrigLat);
$I1 = deg2rad($OrigLong);
$L2 = deg2rad($DestLat);
$I2 = deg2rad($DestLong);
return rad2deg(atan2((sin($I2-$I1),cos($L1)*tan($L2)-sin($L1)*cos($I2-$I1)));
}
The atan2 function takes care of identifying the correct quadrant for the direction, and gives you the angle between -180 to 180 measured from true North, e.g., GreaterCircleDirection(39,-77,21,40) evaluates to 56.76 degrees. Sign convention used: latitudes are positive when north, negative when south; longitudes are positive when east, negative when west.
The calculation is discussed in, among other places, http://patriot.net/~abdali/ftp/qibla.pdf.
Well, your distance calculation checks out. But I see that the answer you get for the initial bearing is (0+105)mod360 rather than (0-105)mod360 (approximately) so I suspect a wrong sign somewhere in the if statement in your GreatCircleDirection function.
Perhaps the worked examples, under "Using the Sine Rule", at http://www.krysstal.com/sphertrig.html will help.

Categories