I need to generate a strong unique API key.
Can anyone suggest the best solution for this? I don't want to use rand() function to generate random characters. Is there an alternative solution?
As of PHP 7.0, you can use the random_bytes($length) method to generate a cryptographically-secure random string. This string is going to be in binary, so you'll want to encode it somehow. A straightforward way of doing this is with bin2hex($binaryString). This will give you a string $length * 2 bytes long, with $length * 8 bits of entropy to it.
You'll want $length to be high enough such that your key is effectively unguessable and that the chance of there being another key being generated with the same value is practically nil.
Putting this all together, you get this:
$key = bin2hex(random_bytes(32)); // 64 characters long
When you verify the API key, use only the first 32 characters to select the record from the database and then use hash_equals() to compare the API key as given by the user against what value you have stored. This helps protect against timing attacks. ParagonIE has an excellent write-up on this.
For an example of the checking logic:
$token = $request->bearerToken();
// Retrieve however works best for your situation,
// but it's critical that only the first 32 characters are used here.
$users = app('db')->table('users')->where('api_key', 'LIKE', substr($token, 0, 32) . '%')->get();
// $users should only have one record in it,
// but there is an extremely low chance that
// another record will share a prefix with it.
foreach ($users as $user) {
// Performs a constant-time comparison of strings,
// so you don't leak information about the token.
if (hash_equals($user->api_token, $token)) {
return $user;
}
}
return null;
Bonus: Slightly More Advanced Use With Base64 Encoding
Using Base64 encoding is preferable to hexadecimal for space reasons, but is slightly more complicated because each character encodes 6 bits (instead of 4 for hexadecimal), which can leave the encoded value with padding at the end.
To keep this answer from dragging on, I'll just put some suggestions for handling Base64 without their supporting arguments. Pick a $length greater than 32 that is divisible by both 3 and 2. I like 42, so we'll use that for $length. Base64 encodings are of length 4 * ceil($length / 3), so our $key will be 56 characters long. You can use the first 28 characters for selection from your storage, leaving another 28 characters on the end that are protected from leaking by timing attacks with hash_equals.
Bonus 2: Secure Key Storage
Ideally, you should be treating the key much like a password. This means that instead of using hash_equals to compare the full string, you should hash the remainder of the key like a password, store that separately than the first half of your key (which is in plain-text), use the first half for selection from your database and verify the latter half with password_verify.
using mcrypt:
<?php
$bytes = mcrypt_create_iv(4, MCRYPT_DEV_URANDOM);
$unpack = unpack("Nint", $bytes);
$id = $unpack['int'] & 0x7FFFFFFF;
PHP has uniqid function http://php.net/manual/en/function.uniqid.php with optional prefix and you can even add additional entropy to further avoid collision. But if you absolutely possitevily need something unique you should not use anything with randomness in it.
This is the best solution i found.
http://www.php.net/manual/en/function.uniqid.php#94959
Related
In php is there a way to give a unique hash from a string, but that the hash was made up from numbers only?
example:
return md5(234); // returns 098f6bcd4621d373cade4e832627b4f6
but I need
return numhash(234); // returns 00978902923102372190
(20 numbers only)
the problem here is that I want the hashing to be short.
edit:
OK let me explain the back story here.
I have a site that has a ID for every registered person, also I need a ID for the person to use and exchange (hence it can't be too long), so far the ID numbering has been 00001, 00002, 00003 etc...
this makes some people look more important
this reveals application info that I don't want to reveal.
To fix point 1 and 2 I need to "hide" the number while keeping it unique.
Edit + SOLUTION:
Numeric hash function based on the code by https://stackoverflow.com/a/23679870/175071
/**
* Return a number only hash
* https://stackoverflow.com/a/23679870/175071
* #param $str
* #param null $len
* #return number
*/
public function numHash($str, $len=null)
{
$binhash = md5($str, true);
$numhash = unpack('N2', $binhash);
$hash = $numhash[1] . $numhash[2];
if($len && is_int($len)) {
$hash = substr($hash, 0, $len);
}
return $hash;
}
// Usage
numHash(234, 20); // always returns 6814430791721596451
An MD5 or SHA1 hash in PHP returns a hexadecimal number, so all you need to do is convert bases. PHP has a function that can do this for you:
$bignum = hexdec( md5("test") );
or
$bignum = hexdec( sha1("test") );
PHP Manual for hexdec
Since you want a limited size number, you could then use modular division to put it in a range you want.
$smallnum = $bignum % [put your upper bound here]
EDIT
As noted by Artefacto in the comments, using this approach will result in a number beyond the maximum size of an Integer in PHP, and the result after modular division will always be 0. However, taking a substring of the hash that contains the first 16 characters doesn't have this problem. Revised version for calculating the initial large number:
$bignum = hexdec( substr(sha1("test"), 0, 15) );
You can try crc32(). See the documentation at: http://php.net/manual/en/function.crc32.php
$checksum = crc32("The quick brown fox jumped over the lazy dog.");
printf("%u\n", $checksum); // prints 2191738434
With that said, crc should only be used to validate the integrity of data.
There are some good answers but for me the approaches seem silly.
They first force php to create a Hex number, then convert this back (hexdec) in a BigInteger and then cut it down to a number of letters... this is much work!
Instead why not
Read the hash as binary:
$binhash = md5('[input value]', true);
then using
$numhash = unpack('N2', $binhash); //- or 'V2' for little endian
to cast this as two INTs ($numhash is an array of two elements). Now you can reduce the number of bits in the number simply using an AND operation. e.g:
$result = $numhash[1] & 0x000FFFFF; //- to get numbers between 0 and 1048575
But be warned of collisions! Reducing the number means increasing the probability of two different [input value] with the same output.
I think that the much better way would be the use of "ID-Crypting" with a Bijectiv function. So no collisions could happen! For the simplest kind just use an Affine_cipher
Example with max input value range from 0 to 25:
function numcrypt($a)
{
return ($a * 15) % 26;
}
function unnumcrypt($a)
{
return ($a * 7) % 26;
}
Output:
numcrypt(1) : 15
numcrypt(2) : 4
numcrypt(3) : 19
unnumcrypt(15) : 1
unnumcrypt(4) : 2
unnumcrypt(19) : 3
e.g.
$id = unnumcrypt($_GET('userid'));
... do something with the ID ...
echo ' go ';
of course this is not secure, but if no one knows the method used for your encryption then there are no security reasons then this way is faster and collision safe.
The problem of cut off the hash are the collisions, to avoid it try:
return hexdec(crc32("Hello World"));
The crc32():
Generates the cyclic redundancy checksum polynomial of 32-bit lengths
of the str. This is usually used to validate the integrity of data
being transmitted.
That give us an integer of 32 bit, negative in 32 bits installation, or positive in the 64 bits. This integer could be store like an ID in a database. This donĀ“t have collision problems, because it fits into 32bits variable, once you convert it to decimal with the hexdec() function.
First of all, md5 is basically compromised, so you shouldn't be using it for anything but non-critical hashing.
PHP5 has the hash() function, see http://www.php.net/manual/en/function.hash.php.
Setting the last parameter to true will give you a string of binary data. Alternatively, you could split the resulting hexadecimal hash into pieces of 2 characters and convert them to integers individually, but I'd expect that to be much slower.
Try hashid.
It hash a number into format you can define. The formats include how many character, and what character included.
Example:
$hashids->encode(1);
Will return "28630" depends on your format,
Just use my manual hash method below:
Divide the number (e.g. 6 digit) by prime values, 3,5,7.
And get the first 6 values that are in the decimal places as the ID to be used. Do a check on uniqueness before actual creation of the ID, if a collision exists, increase the last digit by +1 until a non collision.
E.g. 123456 gives you 771428
123457 gives you 780952
123458 gives you 790476.
I want to add random string as token for form submission which is generated unique forever. I have spent to much time with Google but I am confused which combination to use?
I found so many ways to do this when I googled:
1) Combination of character and number.
2) Combination of character, number and special character.
3) Combination of character, number, special character and date time.
Which combination may i use?
How many character of random string may I generate.?
Any other method which is secure then please let me know.?
Here are some considerations:
Alphabet
The number of characters can be considered the alphabet for the encoding. It doesn't affect the string strength by itself but a larger alphabet (numbers, non-alpha-number characters, etc.) does allow for shorter strings of similar strength (aka keyspace) so it's useful if you are looking for shorter strings.
Input Values
To guarantee your string to be unique, you need to add something which is guaranteed to be unique.
Random value is a good seed value if you have a good random number generator
Time is a good seed value to add but it may not be unique in a high traffic environment
User ID is a good seed value if you assume a user isn't going to create sessions at the exact same time
Unique ID is something the system guarantees is unique. This is often something that the server will guarantee / verify is unique, either in a single server deployment or distributed deployment. A simple way to do this is to add a machine ID and machine unique ID. A more complicated way to do this is to assign key ranges to machines and have each machine manage their key range.
Systems that I've worked with that require absolute uniqueness have added a server unique id which guarantees a item is unique. This means the same item on different servers would be seen as different, which was what was wanted here.
Approach
Pick one more input values that matches your requirement for uniqueness. If you need absolute uniqueness forever, you need something that you control that you are sure is unique, e.g. a machine associated number (that won't conflict with others in a distributed system). If you don't need absolute uniqueness, you can use a random number with other value such as time. If you need randomness, add a random number.
Use an alphabet / encoding that matches your use case. For machine ids, encodings like hexadecimal and base 64 are popular. For machine-readable ids, for case-insensitive encodings, I prefer base32 (Crockford) or base36 and for case-sensitive encodings, I prefer base58 or base62. This is because these base32, 36, 58 and 62 produce shorter strings and (vs. base64) are safe across multiple uses (e.g. URLs, XML, file names, etc.) and don't require transformation between different use cases.
You can definitely get a lot fancier depending on your needs, but I'll just throw this out there since it's what I use frequently for stuff like what you are describing:
md5(rand());
It's quick, simple and easy to remember. And since it's hexadecimal it plays nicely with others.
Refer to this SO Protected Question. This might be what you are looking.
I think its better to redirect you to a previously asked question which has more substantive answers.You will find a lot of options.
Try the code, for function getUniqueToken() which returns you unique string of length 10 (default).
/*
This function will return unique token string...
*/
function getUniqueToken($tokenLength = 10){
$token = "";
//Combination of character, number and special character...
$combinationString = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789*#&$^";
for($i=0;$i<$tokenLength;$i++){
$token .= $combinationString[uniqueSecureHelper(0,strlen($combinationString))];
}
return $token;
}
/*
This helper function will return unique and secure string...
*/
function uniqueSecureHelper($minVal, $maxVal) {
$range = $maxVal - $minVal;
if ($range < 0) return $minVal; // not so random...
$log = log($range, 2);
$bytes = (int) ($log / 8) + 1; // length in bytes
$bits = (int) $log + 1; // length in bits
$filter = (int) (1 << $bits) - 1; // set all lower bits to 1
do {
$rnd = hexdec(bin2hex(openssl_random_pseudo_bytes($bytes)));
$rnd = $rnd & $filter; // discard irrelevant bits
} while ($rnd >= $range);
return $minVal + $rnd;
}
Use this code (two function), you can increase string length by passing int parameter like getUniqueToken(15).
I use your 2nd idea (Combination of character, number and special character), which you refine after googling. I hope my example will help you.
You should go for 3 option. Because it has date and time so it become every time unique.
And for method have you tried
str_shuffle($string)
Every time it generates random string from $string.
End then use substr
($string , start , end)
to cut it down.
End if you want date and time then concatenate the result string with it.
An easily understandable and effective code to generate random strings in PHP. I do not consider predictability concerns important in this connection.
<?php
$d = str_shuffle('0123456789');
$C = str_shuffle('ABCDEFGHIJKLMNOPQRSTUVWXYZ');
$m = str_shuffle('abcdefghijklmnopqrstuvwxyz');
$s = str_shuffle('#!$&()*+-_~');
$l=9; //min 4
$r=substr(str_shuffle($d.$C.$m.$s),0,$l);echo $r.'<br>';
$safe=substr($d,0,1).substr($C,0,1).substr($m,0,1).mb_substr($s,0,1);
$r=str_shuffle($safe.substr($r,0,$l-4));//always at least one digit, special, small and capital
// this also allows for 0,1 or 2 of each available characters in string
echo $r;
exit;
?>
For unique string use uniqid().
And to make it secure, use hashing algorithms
for example :
echo md5(uniqid())
I'm using this code:
$url = "http://www.webtoolkit.info/javascript-base64.html";
print base64_encode($url);
But the result is very long: "aHR0cDovL3d3dy53ZWJ0b29sa2l0LmluZm8vamF2YXNjcmlwdC1iYXNlNjQuaHRtbA=="
There is a way to transform long string to short encryption and to be able to transform?
for example:
new_encrypt("http://www.webtoolkit.info/javascript-base64.html")
Result: "431ASDFafk2"
encoding is not encrypting. If you're depending on this for security then you're in for a very nasty shock in the future.
Base 64 encoding is intended for converting data that's 8 bits wide into a format that can be sent over a communications channel that uses 6 or 7 bits without loss of data. As 6 bits is less than 8 bits the encoded string is obviously going to be longer than the original.
This q/a might have what you're looking for:
An efficient compression algorithm for short text strings
It actually links here:
http://github.com/antirez/smaz/tree/master
I did not test it, just found the links.
First off, base64 is an encoding standard and it is not meant to encrypt data, so don't use that. The reason your data is so much longer is that for every 6 bits in the input string, base64 will output 8 bits.
There is no form of encryption that will directly output a shortened string. The result will be just as long in the best case.
A solution to that problem would be to gzip your string and then encrypt it, but with your URL the added data for the zip format will still end up making your output longer than the input.
There are a many different algorithms for encrypting/decryption. You can take a look at the following documentation: http://www.php.net/manual/en/function.mcrypt-list-algorithms.php (this uses mcrypt with different algorithms).
...BUT, you can't force something to be really small (depends on the size you want). The encrypted string needs to have all the information available to be able to decrypt it. Anyways, a base64-string is not that long (compared with really secure salted hashes for example).
I don't see the problem.
Well... you could try using md5() or uniqid().
The first one generate the md5 hash of your string.
md5("http://www.webtoolkit.info/javascript-base64.html");
http://php.net/manual/en/function.md5.php
The second one generates a 13 unique id and then you can create a relation between your string and that id.
http://php.net/manual/en/function.uniqid.php
P.S. I'm not sure of what you want to achieve but these solutions will probably satisfy you.
You can be creative and just do some 'stuff' to encrypt the url so that it is not easy quess able but encode / decode able..
like reverse strings...
or have a random 3 letters, your string encoded with base64 or just replace letters for numbers or numbers for letters and then 3 more random letters.. once you know the recipe, you can do and undo it.
$keychars = "abcdefghijklmnopqrstuvwxyz0123456789";
$length = 2;
$randkey = "";
$randkey2 = "";
for ($i=0;$i<$length;$i++) $randkey .= substr($keychars, rand(1, strlen($keychars) ), 1);
I seem to have problems with memcached keys that have spaces, though I can't pinpoint exactly what.
A more explicit answer (referred to by Dustin, but not referenced):
Keys
Data stored by memcached is identified with the help of a key. A key
is a text string which should uniquely identify the data for clients
that are interested in storing and retrieving it. Currently the
length limit of a key is set at 250 characters (of course, normally
clients wouldn't need to use such long keys); the key must not include
control characters or whitespace.
Source: protocol.txt (Specific Version)
No. Memcached keys cannot contain spaces.
Memcached clients seem not to validate keys in favor of performance.
What I usually do is create a method named createWellFormedKey($key) and pass the returned result to the set() and get() methods of the memcached client.
I do not use md5 and sha1 hashing unless the base64 version exceeds 250 characters. This is because md5 and sha1 are more expensive operations performance wise.
A sample PHP code looks like this:
/**
* Generates a well formed key using the following algorithm:
* 1. base64_encode the key first to make sure all characters are valid
* 2. Check length of result, less than 250 then return it
* 3. Length of result more than 250 then create a key that is md5($validKey).sha1($validKey).strlen($validKey)
*/
private function createWellFormedKey($key) {
// Get rid of all spaces, control characters, etc using base64
$validKey = base64_encode($key);
$validKeyLength = strlen($validKey);
// 250 is the maximum memcached can handle
if (strlen($validKey) < 250) {
return $validKey;
}
$validKey = md5($validKey).sha1($validKey).$validKeyLength;
return $validKey;
}
At the moment I'm playing around with memcached with PHP and the Problem described IMHO can be easily solved by using hash algorithms like md5 and sha1 (or any other).
I'm using a combination of a md5-hash, sha1-hash and sha256 + the length of the key given.
Obviously this method can be reduced to two hash-methods + length of the key, so you can easily avoid using space or other characters that should not be in the key.
In my opinion the hash-collions are avoided because the chance that both hash algorithms have a collision is nearly 0. By additionally using the key length in the key the problem of a collision is 0.
Applications using the memcached binary protocol can use whitespace-containing keys, though there is still a 250-byte length limit.
I need to generate a string using PHP, it need to be unique and need to be from 4 to 8 characters (the value of a variable).
I thought I can use crc32 hash but I can't decide how many characters, but sure it will be unique. In the other hand only create a "password generator" will generate duplicated string and checking the value in the table for each string will take a while.
How can I do that?
Thanks!
Maybe I can use that :
function unique_id(){
$better_token = md5(uniqid(rand(), true));
$unique_code = substr($better_token, 16);
$uniqueid = $unique_code;
return $uniqueid;
}
$id = unique_id();
Changing to :
function unique_id($l = 8){
$better_token = md5(uniqid(rand(), true));
$rem = strlen($better_token)-$l;
$unique_code = substr($better_token, 0, -$rem);
$uniqueid = $unique_code;
return $uniqueid;
}
echo unique_id(4);
Do you think I'll get unique string each time for a goood while?
In short, I think you'll get a pretty good random value. There's always the chance of a collision but you've done everything you can to get a random value. uniqid() returns a random value based on the current time in microseconds. Specifying rand() (mt_rand() would be better) and the second argument as true to uniqid() should make the value even more unique. Hashing the value using md5() should also make it pretty unique as even a small difference in two random values generated should be magnified by the hashing function. idealmachine is correct in that a longer value is less likely to have a collision than a shorter one.
Your function could also be shorter since md5() will always return a 32 character long string. Try this:
function unique_id($l = 8) {
return substr(md5(uniqid(mt_rand(), true)), 0, $l);
}
The problem with randomness is that you can never be sure of anything. There is a small chance you could get one number this time and the same number the next. That said, you would want to make the string as long as possible to reduce that probability. As an example of how long such numbers can be, GUIDs (globally unique identifiers) are 16 bytes long.
In theory, four hex characters (16 bits) give only 16^4 = 65536 possibilities, while eight hex characters (32 bits) give 16^8 = 4294967296. You, however, need to consider how likely it is for any two hashes to collide (the "birthday problem"). Wikipedia has a good table on how likely such a collision is. In short, four hex characters are definitely not sufficient, and eight might not be.
You may want to consider using Base64 encoding rather than hex digits; that way, you can fit 48 bits in rather than just 32 bits.
Eight bytes is 8 * 8 = 64 bits.
Reliable passwords You can only make from ascii characters a-zA-Z and numbers 0-9. To do that best way is using only cryptographically secure methods, like random_int() or random_bytes() from PHP7. Rest functions as base64_encode() You can use only as support functions to make reliability of string and change it to ASCII characters.
mt_rand() is not secure and is very old.
From any string You must use random_int(). From binary string You should use base64_encode() to make binary string reliable or bin2hex, but then You will cut byte only to 16 positions (values).
See my implementation of this functions.