I've searched through a number of similar questions, but unfortunately I haven't been able to find an answer to this problem. I hope someone can point me in the right direction.
I need to come up with a PHP function which will produce a random number within a set range and mean. The range, in my case, will always be 1 to 100. The mean could be anything within the range.
For example...
r = f(x)
where...
r = the resulting random number
x = the mean
...running this function in a loop should produce random values where the average of the resulting values should be very close to x. (The more times we loop the closer we get to x)
Running the function in a loop, assuming x = 10, should produce a curve similar to this:
+
+ +
+ +
+ +
+ +
Where the curve starts at 1, peeks at 10, and ends at 100.
Unfortunately, I'm not well versed in statistics. Perhaps someone can help me word this problem correctly to find a solution?
interesting question. I'll sum it up:
We need a funcion f(x)
f returns an integer
if we run f a million times the average of the integer is x(or very close at least)
I am sure there are several approaches, but this uses the binomial distribution: http://en.wikipedia.org/wiki/Binomial_distribution
Here is the code:
function f($x){
$min = 0;
$max = 100;
$curve = 1.1;
$mean = $x;
$precision = 5; //higher is more precise but slower
$dist = array();
$lastval = $precision;
$belowsize = $mean-$min;
$abovesize = $max-$mean;
$belowfactor = pow(pow($curve,50),1/$belowsize);
$left = 0;
for($i = $min; $i< $mean; $i++){
$dist[$i] = round($lastval*$belowfactor);
$lastval = $lastval*$belowfactor;
$left += $dist[$i];
}
$dist[$mean] = round($lastval*$belowfactor);
$abovefactor = pow($left,1/$abovesize);
for($i = $mean+1; $i <= $max; $i++){
$dist[$i] = round($left-$left/$abovefactor);
$left = $left/$abovefactor;
}
$map = array();
foreach ($dist as $int => $quantity) {
for ($x = 0; $x < $quantity; $x++) {
$map[] = $int;
}
}
shuffle($map);
return current($map);
}
You can test it out like this(worked for me):
$results = array();
for($i = 0;$i<100;$i++){
$results[] = f(20);
}
$average = array_sum($results) / count($results);
echo $average;
It gives a distribution curve that looks like this:
I'm not sure if I got what you mean, even if I didn't this is still a pretty neat snippet:
<?php
function array_avg($array) { // Returns the average (mean) of the numbers in an array
return array_sum($array)/count($array);
}
function randomFromMean($x, $min = 1, $max = 100, $leniency = 3) {
/*
$x The number that you want to get close to
$min The minimum number in the range
$max Self-explanatory
$leniency How far off of $x can the result be
*/
$res = [mt_rand($min,$max)];
while (true) {
$res_avg = array_avg($res);
if ($res_avg >= ($x - $leniency) && $res_avg <= ($x + $leniency)) {
return $res;
break;
}
else if ($res_avg > $x && $res_avg < $max) {
array_push($res,mt_rand($min, $x));
}
else if ($res_avg > $min && $res_avg < $x) {
array_push($res, mt_rand($x,$max));
}
}
}
$res = randomFromMean(22); // This function returns an array of random numbers that have a mean close to the first param.
?>
If you then var_dump($res), You get something like this:
array (size=4)
0 => int 18
1 => int 54
2 => int 22
3 => int 4
EDIT: Using a low value for $leniency (like 1 or 2) will result in huge arrays, since testing, I recommend a leniency of around 3.
Related
In PHP I want to generate random numbers from 1 to 10 in a loop.
So for example:
$factor="1"; // this will be changed in another area
for ($i=0;$i<10;$i++) {
if ($factor=="1") {$output = rand(1,10);}
else if ($factor=="2") {$output = rand(1,10);}
else {$output = rand(1,10);}
}
Now to explain this - In result I want to receive 10 random numbers, but when $factor = "2", in that case I want to receive numbers from 6 to 10 more frequently as lower numbers.
It means, from 10 numbers I need to have 80% higher random numbers (it means larger than 5) and in 20% lower numbers (5 or lower).
E.g. 1,2,6,7,8,9,7,9,8,6 (1,2 are the only lower numbers = 20%, the rest are higher = 80)
If the $factor will change, then I want to change the percentage, in that case for example 40% lower numbers, 60% higher numbers.
The idea I have is to put each output in the loop to an array, then check each result and somehow calculate, if there is no 80% of larger numbers, then get random numbers again for those, but this seems to be an overkill.
Is there a simplier solution?
Let's go with the percentages you mention and first generate a random number between 1 and 100. Then the lower number, 1 to 20, have to represent outputs 1 to 5 and the higher numbers, 21 to 100, have to represent output 6 to 10. In PHP that would look like this:
function HighMoreOften()
{
$percentage = rand(1, 100);
if ($percentage <= 20) {
return rand(1, 5);
} else {
return rand(6, 10);
}
}
That should do the trick. You can also convert the percentage you got into the output, this would probably be slightly faster:
function HighMoreOften()
{
$percentage = rand(1, 100);
if ($percentage <= 20) {
return ceil($percentage / 5);
} else {
return 6 + ceil(($percentage - 20) / 20);
}
}
but personally I think the first version is easier to understand and change.
To change frequency you gonna need an array of numbers. And a sum to this direction. frequency is the relation of something between an array of things.
$t = 0;
// $factor = 1; // let's say that this means 20%
$factor = 2; // let's say that this means 40%
if ($factor === 1) {
for ($i = 1; $i <= 80; $i++) {
$t += rand(1,10);
}
for ($i = 1; $i <= 20; $i++) {
$t += rand(6,10);
}
} else if ($factor === 2) {
for ($i = 1; $i <= 60; $i++) {
$t += rand(1,10);
}
for ($i = 1; $i <= 40; $i++) {
$t += rand(6,10);
}
} else {
for ($i = 1; $i <= 100; $i++) {
$t += rand(1,10);
}
}
echo round(($t/100), 0);
Something like that! :)
I came with a very simple (maybe creepy) solution, but this works as I wanted:
echo print_r(generate("2"));
function generate($factor) {
$nums=array();
for ($i=0;$i<10;$i++) {
if ($i<$factor) {$rnd = rand(1,5);}
else {$rnd = rand(6,10);}
array_push($nums,$rnd);
}
return $nums;
}
I can also shuffle the final array results, as the lower numbers will be on the beginning always, but in my case it doesn't matter.
I am trying to implement the BBP algorithm in php. My code is returning a decimal which i thought was odd as it should be in hex. I was told to convert to decimal from hex by multiplying by 16 also but now its all just wrong. Here is a sample:
$n1=$n2=$n3=$n4=$n5=$n6=$n7=$n8 =0;
$S1=$S2=$S3=$S4=$S5=$S6=$S7=$S8 = 0; //initializing
$k = 0;
$m1= 8*$k + 1;
$m2 = 8*$k + 4;
$m3 = 8*$k + 5;
$m4 = 8*$k = 6;
$b =16;
$e=$n-$k;
while($k<$n){ //Sum 1 of 8
$S1 +=Modular($b, $m1, $e)/$m1; //see Moduler_Expansion.php
$k++;
}
$k = $n +1; //redefine for second sum, and every other
while($k<$limit){ //Sum 2 of 8
$S2 += (pow($b,$n-$k))/($m1);
$k++; //now repeat similar process for each sum.
}
and I repeat the process for each term of BBP then:
$S = 4*($S1 + $S2) - 2*($S3+$S4) -($S5+$S6) - ($S7+$S8);
`
Following the wiki page I then strip the integer and multiply by 16, but for $k =0 I get; 3.4977777777778
and for $k = 1: 7.9644444444448.
I dont think these are right, it could just be i do not know how to interpret th ouput properly. Can anyone offer any advice?
My rand(0,1) php function returns me the 0 and 1 randomly when I call it.
Can I define something in php, so that it makes 30% numbers will be 0 and 70% numbers will be 1 for the random calls? Does php have any built in function for this?
Sure.
$rand = (float)rand()/(float)getrandmax();
if ($rand < 0.3)
$result = 0;
else
$result = 1;
You can deal with arbitrary results and weights, too.
$weights = array(0 => 0.3, 1 => 0.2, 2 => 0.5);
$rand = (float)rand()/(float)getrandmax();
foreach ($weights as $value => $weight) {
if ($rand < $weight) {
$result = $value;
break;
}
$rand -= $weight;
}
You can do something like this:
$rand = (rand(0,9) > 6 ? 1 : 0)
rand(0,9) will produce a random number between 0 and 9, and whenever that randomly generated number is greater than 6 (which should be nearly 70% time), it will give you 1 otherwise 0...
Obviously, it seems to be the easiest solution to me, but definitely, it wont give you 1 exactly 70% times, but should be quite near to do that, if done correctly.
But, I doubt that any solution based on rand will give you 1 exactly 70% times...
Generate a new random value between 1 and 100. If the value falls below 30, then use 0, and 1 otherwise:
$probability = rand(1, 100);
if ($probability < 30) {
echo 0;
} else {
echo 1;
}
To test this theory, consider the following loop:
$arr = array();
for ($i=0; $i < 10000; $i++) {
$rand = rand(0, 1);
$probability = rand(1, 100);
if ($probability < 30) {
$arr[] = 0;
} else {
$arr[] = 1;
}
}
$c = array_count_values($arr);
echo "0 = " . $c['0'] / 10000 * 100;
echo "1 = " . $c['1'] / 10000 * 100;
Output:
0 = 29.33
1 = 70.67
Create an array with 70% 1 and 30% 0s. Then random sort it. Then start picking numbers from the beginning of the array to the end :)
$num_array = array();
for($i = 0; $i < 3; $i++) $num_array[$i] = 0;
for($i = 0; $i < 7; $i++) $num_array[$i] = 1;
shuffle($num_array);
Pros:
You'll get exactly 30% 0 and 70% 1 for any such array.
Cons: Might take longer computation time than a rand() only solution to create the initial array.
I searched for an answer to my question and this was the topic I found.
But it didn't answered my question, so I had to figure it out myself, and I did :).
I figured out that maybe this will help someone else as well.
It's regarding what you asked, but for more usage.
Basically, I use it as a "power" calculator for a random generated item (let's say a weapon). The item has a "min power" and a "max power" value in the db. And I wanted to have 80% chances to have the "power" value closer to the lower 80% of the max possible power for the item, and 20% for the highest 20% possible max power (that are stored in the db).
So, to do this I did the following:
$min = 1; // this value is normally taken from the db
$max = 30; // this value is normally taken from the db
$total_possibilities = ($max - $min) + 1;
$rand = random_int(1, 100);
if ($rand <= 80) { // 80% chances
$new_max = $max - ($total_possibilities * 0.20); // remove 20% from the max value, so you can get a number only from the lowest 80%
$new_rand = random_int($min, $new_max);
} elseif ($rand <= 100) { // 20% chances
$new_min = $min + ($total_possibilities * 0.80); // add 80% for the min value, so you can get a number only from the highest 20%
$new_rand = random_int($new_min, $max);
}
echo $new_rand; // this will be the final item power
The only problem you can have, is if the initial $min and $max variables are the same (or obviously, if the $max is bigger than the $min). This will throw an error since the random works like this ($min, $max), not the other way around.
This code can be very easily changed to have more percentages for different purposes, instead of 80% and 20% to put 40%, 40% and 20% (or whatever you need). I think the code is pretty much easy to read and understand.
Sorry if this is not helpful, but I hope it is :).
It can't do any harm either way ;).
i had applied for a job recently and the requirement was to complete a test and then interview
2 questions were given for test which was very simple and i did it successfully but still i was told that i have failed the test because the script took more than 18 seconds to complete execution. here is the program i dont understand what else i could do to make it fast. although i have failed the test but still wants to know else i could do?
Program language is PHP and i had to do it using command line input
here is the question:
K Difference
Given N numbers , [N<=10^5] we need to count the total pairs of numbers that have a difference of K. [K>0 and K<1e9]
Input Format:
1st line contains N & K (integers).
2nd line contains N numbers of the set. All the N numbers are assured to be distinct.
Output Format:
One integer saying the no of pairs of numbers that have a diff K.
Sample Input #00:
5 2
1 5 3 4 2
Sample Output #00:3
Sample Input #01:
10 1
363374326 364147530 61825163 1073065718 1281246024 1399469912 428047635 491595254 879792181 1069262793
Sample Output #01:
0
Note: Java/C# code should be in a class named "Solution"
Read input from STDIN and write output to STDOUT.
and this is the solution
$fr = fopen("php://stdin", "r");
$fw = fopen("php://stdout", "w");
fscanf($fr, "%d", $total_nums);
fscanf($fr, "%d", $diff);
$ary_nums = array();
for ($i = 0; $i < $total_nums; $i++) {
fscanf($fr, "%d", $ary_nums[$i]);
}
$count = 0;
sort($ary_nums);
for ($i = $total_nums - 1; $i > 0; $i--) {
for ($j = $i - 1; $j >= 0; $j--) {
if ($ary_nums[$i] - $ary_nums[$j] == $diff) {
$count++;
$j = 0;
}
}
}
fprintf($fw, "%d", $count);
Your algorithm's runtime is O(N^2) that is approximately 10^5 * 10^5 = 10^10. With some basic observation it can be reduced to O(NlgN) which is approximately 10^5*16 = 1.6*10^6 only.
Algorithm:
Sort the array ary_nums.
for every i'th integer of the array, make a binary search to find if ary_nums[i]-K, is present in the array or not. If present increase result, skip i'th integer otherwise.
sort($ary_nums);
for ($i = $total_nums - 1; $i > 0; $i--) {
$hi = $i-1;
$low = 0;
while($hi>=$low){
$mid = ($hi+$low)/2;
if($ary_nums[$mid]==$ary_nums[$i]-$diff){
$count++;
break;
}
if($ary_nums[$mid]<$ary_nums[$i]-$diff){
$low = $mid+1;
}
else{
$hi = $mid-1;
}
}
}
}
I got the same question for my technical interview. I wonder if we are interviewing for the same company. :)
Anyway, here is my answer I came up with (after the interview):
// Insert code to get the input here
$count = 0;
sort ($arr);
for ($i = 0, $max = $N - 1; $i < $max; $i++)
{
$lower_limit = $i + 1;
$upper_limit = $max;
while ($lower_limit <= $upper_limit)
{
$midpoint = ceil (($lower_limit + $upper_limit) / 2);
$diff = $arr[$midpoint] - $arr[$i];
if ($diff == $K)
{
// Found it. Increment the count and break the inner loop.
$count++;
$lower_limit = $upper_limit + 1;
}
elseif ($diff < $K)
{
// Search to the right of midpoint
$lower_limit = $midpoint + 1;
}
else
{
// Search to the left of midpoint
$upper_limit = $midpoint - 1;
}
}
}
#Fallen: Your code failed for the following inputs:
Enter the numbers N and K: 10 3
Enter numbers for the set: 1 2 3 4 5 6 7 8 9 10
Result: 6
I think it has to do with your calculation of $mid (not accounting for odd number)
I need to generate x amount of random odd numbers, within a given range.
I know this can be achieved with simple looping, but I'm unsure which approach would be the best, and is there a better mathematical way of solving this.
EDIT: Also I cannot have the same number more than once.
Generate x integer values over half the range, and for each value double it and add 1.
ANSWERING REVISED QUESTION: 1) Generate a list of candidates in range, shuffle them, and then take the first x. Or 2) generate values as per my original recommendation, and reject and retry if the generated value is in the list of already generated values.
The first will work better if x is a substantial fraction of the range, the latter if x is small relative to the range.
ADDENDUM: Should have thought of this approach earlier, it's based on conditional probability. I don't know php (I came at this from the "random" tag), so I'll express it as pseudo-code:
generate(x, upper_limit)
loop with index i from upper_limit downto 1 by 2
p_value = x / floor((i + 1) / 2)
if rand <= p_value
include i in selected set
decrement x
return/exit if x <= 0
end if
end loop
end generate
x is the desired number of values to generate, upper_limit is the largest odd number in the range, and rand generates a uniformly distributed random number between zero and one. Basically, it steps through the candidate set of odd numbers and accepts or rejects each one based how many values you still need and how many candidates still remain.
I've tested this and it really works. It requires less intermediate storage than shuffling and fewer iterations than the original acceptance/rejection.
Generate a list of elements in the range, remove the element you want in your random series. Repeat x times.
Or you can generate an array with the odd numbers in the range, then do a shuffle
Generation is easy:
$range_array = array();
for( $i = 0; $i < $max_value; $i++){
$range_array[] .= $i*2 + 1;
}
Shuffle
shuffle( $range_array );
splice out the x first elements.
$result = array_slice( $range_array, 0, $x );
This is a complete solution.
function mt_rands($min_rand, $max_rand, $num_rand){
if(!is_integer($min_rand) or !is_integer($max_rand)){
return false;
}
if($min_rand >= $max_rand){
return false;
}
if(!is_integer($num_rand) or ($num_rand < 1)){
return false;
}
if($num_rand <= ($max_rand - $min_rand)){
return false;
}
$rands = array();
while(count($rands) < $num_rand){
$loops = 0;
do{
++$loops; // loop limiter, use it if you want to
$rand = mt_rand($min_rand, $max_rand);
}while(in_array($rand, $rands, true));
$rands[] = $rand;
}
return $rands;
}
// let's see how it went
var_export($rands = mt_rands(0, 50, 5));
Code is not tested. Just wrote it. Can be improved a bit but it's up to you.
This code generates 5 odd unique numbers in the interval [1, 20]. Change $min, $max and $n = 5 according to your needs.
<?php
function odd_filter($x)
{
if (($x % 2) == 1)
{
return true;
}
return false;
}
// seed with microseconds
function make_seed()
{
list($usec, $sec) = explode(' ', microtime());
return (float) $sec + ((float) $usec * 100000);
}
srand(make_seed());
$min = 1;
$max = 20;
//number of random numbers
$n = 5;
if (($max - $min + 1)/2 < $n)
{
print "iterval [$min, $max] is too short to generate $n odd numbers!\n";
exit(1);
}
$result = array();
for ($i = 0; $i < $n; ++$i)
{
$x = rand($min, $max);
//not exists in the hash and is odd
if(!isset($result{$x}) && odd_filter($x))
{
$result[$x] = 1;
}
else//new iteration needed
{
--$i;
}
}
$result = array_keys($result);
var_dump($result);