Clone object and save in a different table - php

I have a number of tables with a large number of rows, some of them nearing a million. There are background tasks which keep accessing some recent records in these tables. Because of the ever increasing size, the tasks keep on taking a longer time to complete. Besides, when showing data on the front end, the calls to server also take a very long time.
Hence, I thought it is better to create a replica of such tables (as an archive) and keep saving data in these 'archive' tables (for future use if any). The idea is that whenever a record is completely processed, it will be deleted from the 'live' tables and be stored in the 'archive' tables.
PHP clone does not work as it creates an entity exactly same as the orginal.
One definite way is to follow exact same steps to create the entity, and always simultaneously keep on modifying.
Is there a better way to do this?

What you are looking for is "Partitioning". Both MySQL and Postgres have some beefy manuals.
Probably the best way to implement this is to use a daemon script that runs the partitioning queries every X time.

Related

MySQL or JSON for data retrieval

So, I have situation and I need second opinion. I have database and it' s working great with all foreign keys, indexes and stuff, but, when I reach certain amount of visitors, around 700-800 co-current visitors, my server hits bottle neck and displays "Service temporarily unavailable." So, I had and idea, what if I pull data from JSON instead of database. I mean, I would still update database, but on each update I would regenerate JSON file and pull data from it to show on my homepage. That way I would not press my CPU to hard and I would be able to make some kind of cache on user-end.
What you are describing is caching.
Yes, it's a common optimization to avoid over-burdening your database with query load.
The idea is you store a copy of data you had fetched from the database, and you hold it in some form that is quick to access on the application end. You could store it in RAM, or in a JSON file. Some people operate a Memcached or Redis in-memory database as a shared resource, so your app can run many processes or threads that access the same copy of data in RAM.
It's typical that your app reads some given data many times for every single time it updates the data. The greater this ratio of reads to writes, the better the savings in terms of lightening the load on your database.
It can be tricky, however, to keep the data in cache in sync with the most recent changes in the database. In other words, how do all the cache copies know when they should re-fetch the data from the database?
There's an old joke about this:
There are only two hard things in Computer Science: cache invalidation and naming things.
— Phil Karlton
So after another few days of exploring and trying to get the right answer this is what I have done. I decided to create another table, instead of JSON, and put all data, that was suposed to go in JSON file, in the table.
WHY?
Number one reason is MySQL has ability to lock tables while they're being updated, JSON has not.
Number two is that I will downgrade from few dozens of queries to just one, simplest, query: SELECT * FROM table.
Number three is that I have better control over content this way.
Number four, while I was searching for answer I found out that some people had issues with JSON availability if a lot of co-current connections were making request for same JSON, I would never have a problem with availability.

Optimizing MySQL InnoDB insert through PHP

I've a Cronjob script, written in PHP with following requirements:
Step 1 (DB server 1): Get some data from multiple tables (We have lot of data here)
Step 2 (Application server): Perform some calculation
Step 3 (DB Server 2): After calculation, insert that data in another database(MySQL)/table(InnoDB) for reporting purpose. This table contains 97 columns, actually different rates, which can not be normalized further. This is different physical DB server and have only one DB.
Script worked fine during development but on production, Step 1 returned approx 50 million records. Result, as obvious, script run for around 4 days and then failed. (Rough estimation, with current rate, it would have taken approx 171 days to finish)
Just for note, We were using prepared statements and Step 1 is getting data in bunch of 1000 records at a time.
What we did till now
Optimization Step 1: Multiple values in insert & drop all indexes
Some tests showed insert (Step 3 above) is taking maximum time (More then 95% time). To optimize, after some googling, we dropped all indexes from table, and instead of one insert query/row, we are not having one insert query/100 rows. This gave us a bit faster insert but still, as per rough estimate, it will take 90 days to run cron once, and we need to run it once every month as new data will be available every month.
Optimization step 2, instead of writing to DB, write to csv file and then import in mysql using linux command.
This step seems not working. Writing 30000 rows in CSV file took 16 minutes and we still need to import that CSV file in MySQL. We have single file handler for all write operations.
Current state
It seems I'm now clueless on what else can be done. Some key requirements:
Script need to insert approx 50,000,000 records (will increase with time)
There are 97 columns for each records, we can skip some but 85 columns at the minimum.
Based on input, we can break script into three different cron to run on three different server but insert had to be done on one DB server (master) so not sure if it will help.
However:
We are open to change database/storage engine (including NoSQL)
On production, we could have multiple database servers but insert had to be done on master only. All read operations can be directed to slave, which are minimal and occasional (Just to generate reports)
Question
I don't need any descriptive answer but can someone in short suggest what could be possible solution. I just need some optimization hint and I'll do remaining R&D.
We are open for everything, change database/storage engine, Server optimization/ multiple servers (Both DB and application), change programming language or whatever is best configuration for above requirements.
Final expectation, cron must finish in maximum 24 hours.
Edit in optimization step 2
To further understand why generating csv is taking time, I've created a replica of my code, with only necessary code. That code is present on git https://github.com/kapilsharma/xz
Output file of experiment is https://github.com/kapilsharma/xz/blob/master/csv/output500000_batch5000.txt
If you check above file, I'm inserting 500000 records and getting 5000 records form database at a time, making loop running 100 times. Time taken in first loop was 0.25982284545898 seconds but in 100th loop was 3.9140808582306. I assume its because of system resource and/or file size of csv file. In that case, it becomes more of programming question then DB optimization. Still, can someone suggest why it is taking more time in next loops?
If needed, whole code is committed except csv files and sql file generated to create dummy DB as these files are very big. However they can be easily generated with code.
Using OFFSET and LIMIT to walk through a table is O(N*N), that is much slower than you want or expected.
Instead, walk through the table "remembering where you left off". It is best to use the PRIMARY KEY for such. Since the id looks like an AUTO_INCREMENT without gaps, the code is simple. My blog discusses that (and more complex chunking techniques).
It won't be a full 100 (500K/5K) times as fast, but it will be noticeably faster.
This is a very broad question. I'd start by working out what the bottleneck is with the "insert" statement. Run the code, and use whatever your operating system gives you to see what the machine is doing.
If the bottleneck is CPU, you need to find the slowest part and speed it up. Unlikely, given your sample code, but possible.
If the bottleneck is I/O or memory, you're almost certainly going to need either better hardware, or a fundamental re-design.
The obvious way to re-design this is to find a way to handle only deltas in the 50M records. For instance, if you can write to an audit table whenever a record changes, your cron job can look at that audit table and pick out any data that was modified since the last batch run.
I had a mailer cron job on CakePHP, which failed merely on 600 rows fetch and send email to the registered users. It couldn't even perform the job in batch operations. We finally opted for mandrill and since then it all went well.
I'd suggest (considering it a bad idea to touch the legacy system in production) :
Schedule a mirco solution in golang or node.js considering
performance benchmarks, as database interaction is involved -
you'll be fine with any of these. Have this micro solution perform
the cron job. (Fetch + Calculate)
Reporting from NoSQL will be
challenging, so you should try out using available services like
Google Big Query. Have the cron job store data to google big
query and you should get a huge performance improvement even in
generating reports.
or
With each row inserted into your original db server 1, set up a messaging mechanism which performs the operations of cron job everytime an insert is made (sort of trigger) and store it into your reporting server. Possible services you can use are : Google PubSub or Pusher. I think per insert time consumption will be pretty less. (You can also use a async service setup which does the task of storing into the reporting database).
Hope this helps.

How to handle user's data in MySQL/PHP, for large number of users and data entries

Let's pretend with me here:
PHP/MySQL web-application. Assume a single server and a single MySQL DB.
I have 1,000 bosses. Every boss has 10 workers under them. These 10 workers (times 1k, totaling 10,000 workers) each have at least 5 database entries (call them work orders for this purpose) in the WebApplication every work day. That's 50k entries a day in this work orders table.
Server issues aside, I see two main ways to handle the basic logic of the database here:
Each Boss has an ID. There is one table called workorders and it has a column named BossID to associate every work order with a boss. This leaves you with approximately 1 million entries a month in a single table, and to me that seems to add up fast.
Each Boss has it's own table that is created when that Boss signed up, i.e. work_bossID where bossID = the boss' unique ID. This leaves you with 1,000 tables, but these tables are much more manageable.
Is there a third option that I'm overlooking?
Which method would be the better-functioning method?
How big is too big for number of entries in a table (let's assume a small number of columns: less than 10)? (this can include: it's time to get a second server when...)
How big is too big for number of tables in a database? (this can include: it's time to get a second server when...)
I know that at some point we have to bring in talks of multiple servers, and databases linked together... but again, let's focus on a single server here with a singly MySQL DB.
If you use a single server, I don't think there is a problem with how big the table gets. It isn't just the number of records in a table, but how frequently it is accessed.
To manage large datasets, you can use multiple servers. In this case:
You can keep all workorders in a single table, and mirror them across different servers (so that you have slave servers)
You can shard the workorders table by boss (in this case you access the server depending on where the workorder belongs) - search for database sharding for more information
Which option you choose depends on how you will use your database.
Mirrors (master/slave)
Keeping all workorders in a single table is good for querying when you don't know which boss a workorder belongs to, eg. if you are searching by product type, but any boss can have orders in any product type.
However, you have to store a copy of everything on every mirror. In addition only one server (the master) can deal with update (or adding workorder) SQL requests. This is fine if most of your SQL queries are SELECT queries.
Sharding
The advantage of sharding is that you don't have to store a copy of the record on every mirror server.
However, if you are searching workorders by some attribute for any boss, you would have to query every server to check every shard.
How to choose
In summary, use a single table if you can have all sorts of queries, including browsing workorders by an attribute (other than which boss it belongs to), and you are likely to have more SELECT (read) queries than write queries.
Use shards if you can have write queries on the same order of magnitude as read queries, and/or you want to save memory, and queries searching by other attributes (not boss) are rare.
Keeping queries fast
Large databases are not really a big problem, if they are not overwhelmed by queries, because they can keep most of the database on hard disk, and only keep what was accessed recently in cache (on memory).
The other important thing to prevent any single query from running slowly is to make sure you add the right index for each query you might perform to avoid linear searches. This is to allow the database to binary search for the record(s) required.
If you need to maintain a count of records, whether of the whole table, or by attribute (category or boss), then keep counter caches.
When to get a new server
There isn't really a single number you can assign to determine when a new server is needed because there are too many variables. This decision can be made by looking at how fast queries are performing, and the CPU/memory usage of your server.
Scaling is often a case of experimentation as it's not always clear from the outset where the bottlenecks will be. Since you seem to have a pretty good idea of the kind of load the system will be under, one of the first things to do is capture this in a spreadsheet so you can work out some hypotheticals. This allows you do do a lot of quick "what if" scenarios and come up with a reasonable upper end for how far you have to scale with your first build.
For collecting large numbers of records there's some straight-forward rules:
Use the most efficient data type to represent what you're describing. Don't worry about using smaller integer types to shave off a few bytes, or shrinking varchars. What's important here is using integers for numbers, date fields for dates, and so on. Don't use a varchar for data that already has a proper type.
Don't over-index your table, add only what is strictly necessary. The larger the number of indexes you have, the slower your inserts will get as the table grows.
Purge data that's no longer necessary. Where practical delete it. Where it needs to be retained for an extended period of time, make alternate tables you can dump it into. For instance, you may be able to rotate out your main orders table every quarter or fiscal year to keep it running quickly. You can always adjust your queries to run against the other tables if required for reporting. Keep your working data set as small as practical.
Tune your MySQL server by benchmarking, tinkering, researching, and experimenting. There's no magic bullet here. There's many variables that may work for some people but might slow down your application. They're also highly dependent on OS, hardware, and the structure and size of your data. You can easily double or quadruple performance by allocating more memory to your database engine, for instance, either InnoDB or MyISAM.
Try using other MySQL forks if you think they might help significantly. There are a few that offer improved performance over the regular MySQL, Percona in particular.
If you query large tables often and aggressively, it may make sense to de-normalize some of your data to reduce the number of expensive joins that have to be done. For instance, on a message board you might include the user's name in every message even though that seems like a waste of data, but it makes displaying large lists of messages very, very fast.
With all that in mind, the best thing to do is design your schema, build your tables, and then exercise them. Simulate loading in 6-12 months of data and see how well it performs once really loaded down. You'll find all kinds of issues if you use EXPLAIN on your slower queries. It's even better to do this on a development system that's slower than your production database server so you won't have any surprises when you deploy.
The golden rule of scaling is only optimize what's actually a problem and avoid tuning things just because it seems like a good idea. It's very easy to over-engineer a solution that will later do the opposite of what you intend or prove to be extremely difficult to un-do.
MySQL can handle millions if not billions of rows without too much trouble if you're careful to experiment and prove it works in some capacity before rolling it out.
i had database size problem as well in one of my networks so big that it use to slow the server down when i run query on that table..
in my opinion divide your database into dates decide what table size would be too big for you - let say 1 million entries then calculate how long it will take you to get to that amount. and then have a script every that period of time to either create a new table with the date and move all current data over or just back that table up and empty it.
like putting out dated material in archives.
if you chose the first option you'll be able to access that date easily by referring to that table.
Hope that idea helps
Just create a workers table, bosses table, a relationships table for the two, and then all of your other tables. With a relationship structure like this, it's very dynamic. Because, if it ever got large enough you could create another relationship table between the work orders to the bosses or to the workers.
You might want to look into bigints, but I doubt you'll need that. I know it that the relationships table will get massive, but thats good db design.
Of course bigint is for mySQL, which can go up to -9223372036854775808 to 9223372036854775807 normal. 0 to 18446744073709551615 UNSIGNED*

How should I version my data in an MS SQL shared server environment?

The server is a shared Windows hosting server with Hostgator. We are allowed "unlimited" MS SQL databases and each is allowed "unlimited" space. I'm writing the website in PHP. The data (not the DB schema, but the data) needs to be versioned such that (ideally) my client can select the DB version he wants from a select box when he logs in to the website, and then (roughly once a month) tag the current data, also through a simple form on the website. I've thought of several theoretical ways to do this and I'm not excited about any of them.
1) Put a VersionNumber column on every table; have a master Version table that lists all versions for the select box at login. When tagged, every row without a version number in every table in the db would be duplicated, and the original would be given a version number.
This seems like the easiest idea for both me and my client, but I'm concerned the db would be awfully slow in just a few months, since every table will grow by (at least) its original size every month. There's not a whole lot of data, and there probably never will be, in any one version. But multiplying versions in the same table just scares me.
2) Duplicate the DB every time we tag.
It looks like this would have to be done manually by my client since the server is shared, so I already dislike the idea. But in addition, the old DBs would have to be able to work with the current website code, and as changes are made to the DB structure over time (which is inevitable) the old DBs will no longer work with the new website code.
3) Create duplicate tables (with the version in their name) inside the same database every time we tag. Like [v27_Employee].
The benefit here over idea (1) would be that no table would get humongous in size, allowing the queries to keep up their speed, and over idea (2) it could theoretically be done easily through the simple website tag form rather than manually by my client. The problems are that the queries in my PHP code are going to get all discombobulated as I try to explain which Employee table is joining with which Address table depending upon which version is selected, since they all have the same name, but different; and also that as the code changes, the old DB tables no longer match, same problem as (2).
So, finally, does anyone have any good recommendations? Best practices? Things they did that worked in the past?
Thanks guys.
Option 1 is the most obvious solution because it has the lowest maintenance overhead and it's the easiest to work with: you can view any version at any time simply by adding #VersionNumber to your queries. If you want or need to, this means you could also implement option 3 at the same time by creating views for each version number instead of real tables. If your application only queries one version at a time, consider making the VersionNumber the first column of a clustered primary key, so that all the data for one version is physically stored together.
And it isn't clear how much data you have anyway. You say it's "not a whole lot", but that means nothing. If you really have a lot of data (say, into hundreds of millions of rows) and if you have Enterprise Edition (you didn't say what edition you're using), you can use table partitioning to 'split' very large tables for better performance.
My conclusion would be to do the simplest, easiest thing to maintain right now. If it works fine then you're done. If it doesn't, you will at least be able to rework your design from a simple, stable starting point. If you do something more complicated now, you will have much more work to do if you ever need to redesign it.
You could copy your versionable tables into a new database every month. If you need to do a join between a versionable table and a non-versionable table, you'd need to do a cross-schema join - which is supported in SQL Server. This approach is a bit cleaner than duplicating tables in a single schema, since your database explorer will start getting unwieldy with all the old tables.
What I finally wound up doing was creating a new schema for each version and duplicating the tables and triggers and keys each time the DB is versioned. So, for example, I had this table:
[dbo].[TableWithData]
And I duplicated it into this table in the same DB:
[v1].[TableWithData]
Then, when the user wants to view old tables, they select which version and my code automatically changes every instance of [dbo] in every query to [v1]. It's conceptually fairly simple and the user doesn't have to do anything complicated to version -- just type in "v1" to a form and hit a submit button. My PHP and SQL does the rest.
I did find that some tables had to remain separate -- I made a different schema called [ctrl] into which I put tables that will not be versioned, like the username / password table for example. That way I just duplicate the [dbo] tables.
Its been operational for a year or so and seems to work well at the moment. They've only versioned maybe 4 times so far. The only problem I seem to have consistently that I can't figure out is that triggers seem to get lost somehow. That's probably a problem with my very complex PHP rather than the DB versioning concept itself though.

Preferred method for Materialized Views (Summary Tables) with MySQL

I am developing a project at work for which I need to create and maintain Summary Tables for performance reasons. I believe the correct term for this is Materialized Views.
I have 2 main reasons to do this:
Denormalization
I normalized the tables as much as possible. So there are situations where I would have to join many tables to pull data. We work with MySQL Cluster, which has pretty poor performance when it comes to JOIN's.
So I need to create Denormalized Tables that can run faster SELECT's.
Summarize Data
For example, I have a Transactions table with a few million records. The transactions come from different websites. The application needs to generate a report will display the daily or monthly transaction counts, and total revenue amounts per website. I don't want the report script to calculate this every time, so I need to generate a Summary Table that will have a breakdown by [site,date].
That is just one simple example. There are many different kinds of summary tables I need to generate and maintain.
In the past I have done these things by writing several cron scripts to keep each summary table updated. But in this new project, I am hoping to implement a more elegant and proper solution.
I would prefer a PHP based solution, as I am not a server administrator, and I feel the most comfortable when I can control everything through my application code.
Solutions that I have considered:
Copying VIEW's
If the resulting table can be represented as a single SELECT query, I can generate a VIEW. Since they are slow, there can be a cronjob that copies this VIEW into a real table.
However, some of these SELECT queries can be so slow that it's not acceptable even for cronjobs. It is not very efficient to recreate the whole summary data, if older rows are not even being updated much.
Custom Cronjobs for each Summary Table
This is the solution I have used before, but now I am trying to avoid it if possible. If there will be many summary tables, it can be messy to maintain.
MySQL Triggers
It is possible to add triggers to the main tables so that every time there is an INSERT, UPDATE or DELETE, the summary tables get updated accordingly.
There would be no cronjobs and the summaries would be in real time. However if there is ever a need to rebuild a summary table from scratch, it would have to be done with another solution (probably #1 above).
Using ORM Hooks/Triggers
I am using Doctrine as my ORM. There is a way to add event listeners that will trigger stuff on INSERT/UPDATE/DELETE, which in turn can update the summary tables. In a sense this solution is similar to #3 above, but I will have better control over these triggers since they will be implemented in PHP.
Implementation Considerations:
Complete Rebuilds
I want to avoid having to rebuild the summary tables, for efficiency, and only update for new data. But in case something goes wrong, I need the capability to rebuild the summary table from scratch using existing data on the main tables.
Ignoring UPDATE/DELETE on Old Data
Some summaries can assume that older records will never be updated or deleted, but only new records will be inserted. The summary process can save a lot of work by making the assumption that it doesn't need to check for updates on older data.
But of course this won't apply to all tables.
Keeping a Log
Let's assume that I won't have access to, or do not want to use the binary MySQL logs.
For summarizing new data, the summary process just needs to remember the last primary key id's for the last records it summarized. Next time it runs, it can summarize everything after that id. However, to keep track of older records that have been updated/deleted, it needs another log so it can go back and re-summarize that data.
I would appreciate any kind of strategies, suggestions or links that can help. Thank you!
As noted above materialized views in Oracle are different than indexed views in SQL Server. They are very cool and useful. See http://download.oracle.com/docs/cd/B10500_01/server.920/a96567/repmview.htm for details
MySql does not have support for these however.
One thing you mention several times is poor performance. Have you checked your database design for proper indexing and run explain plans on the queries to see why they are slow. See here http://dev.mysql.com/doc/refman/5.1/en/using-explain.html. This is of course assuming that your server is tuned properly, you have mysql setup and tuned, e.g. buffer caches, etc. etc. etc.
To your direct question. What you sound like you want to do is something we do often in a data warehouse situation. We have a production database and a DW that pulls in all sorts of information, aggregates and pre-caclulates it to speed up querying. This may be overkill for you but you can decide. Depending on the latency you define for your reports, i.e. how often you need them, we normally go through an ETL (extract transform load) process periodically (daily, weekly, etc.) to populate the DW from the production system. This keeps impact low on the production system and moves all reporting to another set of servers which also lessens the load. On the DW side, I would normally design my schemas different, i.e. using star schemas. (http://www.orafaq.com/node/2286) Star schemas have fact tables (things you want to measure) and dimensions (things you want to aggregate the measures by (time, geography, product categories, etc.) On SQL Server they also include an additional engine called SQL Server Analysis services (SSAS) to look at fact tables and dimensions, pre calculate and build OLAP data cubes. In these data cubes you can drill down and look at all types of patterns, do data analysis and data mining. Oracle does things slightly differently but the outcome is the same.
Whether you want to go the about route really depends on the business need and how much value you get from data analysis. As I said it is likely overkill if you just have a few summary tables but some of the concepts you may find helpful as you think things through. If your business is going toward a business intelligence solution then this is something to consider.
PS You can actually set a DW up to work in "real-time" using something called ROLAP if that is the business need. Microstrategy has a good product that works well for this.
PPS You also may want to look at PowerPivot from MS (http://www.powerpivot.com/learn.aspx) I have only played with it so I cannot tell you how it works on very large datasets.
Flexviews (http://flexvie.ws) is an open source PHP/MySQL based project. Flexviews adds incrementally refreshable materialized views (like the materialized views in Oracle) to MySQL, usng PHP and stored procedures.
It includes FlexCDC, a PHP based change data capture utility which reads binary logs, and the Flexviews MySQL stored procedures which are used to define and maintain the views.
Flexviews supports joins (inner join only) and aggregation so it can be used to create summary tables. Moreover, you can use Flexviews in combination with Mondrian's (a ROLAP server) aggregation designer to create summary tables that the ROLAP tool can automatically use.
If you don't have access to the logs (it can read them remotely, btw, so you don't need server access, but you do need SUPER privs) then you can use 'COMPLETE' refresh with Flexviews. This automates creating a new table with 'CREATE TABLE ... AS SELECT' under a new table name. It then uses RENAME TABLE to swap the new table for the one, renaming the old with an _old postfix. Finally it drops the old table. The advantage here is that the SQL to create the view is stored in the database (flexviews.mview) and can be refreshed with a simple API call which automates the swapping process.

Categories